Skip to main content

Advertisement

Log in

Widespread genetic mosaicism in the marine angiosperm Zostera marina is correlated with clonal reproduction

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Somatic mutations are an underappreciated source of genetic variation within multi-cellular organisms. The resulting genetic mosaicism should be particularly abundant in large clones of vegetatively propagating angiosperms. Little is known on the abundance and ecological correlates of genetic mosaicism in field populations, despite its potential evolutionary significance. Because sexual reproduction restores genetic homogeneity, we predicted that in facultatively clonally reproducing organisms, the prevalence of genetic mosaicism increases with increasing clonality. This was tested among 33 coastal locations colonized by the ecologically important marine angiosperm Zostera marina, ranging from Portugal to Finland. Genetic mosaics were detectable as complex microsatellite genotypes at two hypervariable loci that revealed additional mosaic alleles, suggesting the presence of one or more divergent cell lineages within the same ramet. The proportions of non-mosaic genotypes in a population sharply decreased below a clonal richness of 0.2. Accordingly, more genetic mosaics were found at the southern and northern limit of the distribution of Z. marina in Europe where sexual reproduction is rare or absent. The genetic mosaics observed at neutral microsatellite markers suggest the possibility of within-clone variation at selectively relevant loci and supports the notion that members of clones are seldom genetically identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ally D, Ritland K, Otto SP (2008) Can clone size serve as a proxy for clone age? An exploration using microsatellite divergence in Populus tremuloides. Mol Ecol 17:4897–4911

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830

    Article  PubMed  CAS  Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41:1255–1264

    Article  Google Scholar 

  • Billingham MR, Reusch TBH, Alberto F, Serrão EA (2003) Is asexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. Mar Ecol Prog Ser 265:77–83

    Article  Google Scholar 

  • Buss LW (1983) Somatic variation and evolution. Paleobiology 9:12–16

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Dorken ME, Neville KJ, Eckert CG (2004) Evolutionary vestigialization of sex in a clonal plant: selection versus neutral mutation in geographically peripheral populations. Proc R Soc Lond Ser B 271:2375–2380

    Article  Google Scholar 

  • Douhovnikoff V, Dodd RS (2003) Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor Appl Genet 106:1307–1315

    PubMed  CAS  Google Scholar 

  • Eckert CG (2001) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  • Fagerström T (1992) The meristem-meristem cycle as a basis for defining fitness in clonal plants. Oikos 63:449–453

    Article  Google Scholar 

  • Fagerström T, Briscoe DA, Sunnucks P (1998) Evolution of mitotic cell-lineages in multicellular organsims. Trends Evol Ecol 13:117–120

    Article  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Franks T, Botta R, Thomas MR (2002) Chimerism in grapevines: implication for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199

    Article  PubMed  CAS  Google Scholar 

  • Gill EG, Chao L, Perkins SL, Wolf JB (1995) Genetic mosaicism in plants and clonal animals. Annu Rev Ecol Syst 26:423–444

    Article  Google Scholar 

  • Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432

    Article  Google Scholar 

  • Jackson JBC, Buss LW, Cook RE (1985) Population biology and evolution of clonal organisms. Yale University Press, New Haven

    Google Scholar 

  • Klekowski EJ (1988) Progressive cross- and self-sterility associated with aging in fern clones and perhaps other plants. Heredity 61:247–253

    Article  Google Scholar 

  • Klekowski EJ (2003) Plant clonality, mutation, diplontic selection and mutational meltdown. Biol J Linnean Soc 79:61–67

    Article  Google Scholar 

  • Klekowski EJ, Godfrey PJ (1989) Ageing and mutation in plants. Nature 340:389

    Article  Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. System Bot 22:443–463

    Article  Google Scholar 

  • Loxdale HD, Lushai G (2003) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linnean Soc 79:3–16

    Article  Google Scholar 

  • Lushai G, Loxdale HD (2002) The biological improbability of a clone. Genet Res cambridge 79:1–9

    Google Scholar 

  • McKey D, Elias M, Pujol B, Duputie A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Michel A, Arias RS, Scheffler BE, Duke SO, Netherland M, Dayan FE (2004) Somatic-mutation mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Mol Ecol 13:3229–3237

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Nassar A, Ortiz-Medina E, Leclerc Y, Donnelly D (2008) Periclinal chimeral status of new Brunswick ‘Russet Burbank’ potato. Am J Potato Res 85:432–437

    Article  Google Scholar 

  • Olsen JL, Stam WT, Coyer JA, Reusch TBH, Billingham M, Boström C, Calvert E, Christie H, Granger S, La Lumiere R, Milchakova N, Oudot Le-Seq M-P, Procaccini G, Sanjabi B, Serrao E, Veldsink J, Widdicombe S, Wyllie-Echeverria (2004) Population differentiation and post-ice age recolonization of the North Atlantic by the seagrass Zostera marina L. Mol Ecol 13:1923–1941

    Article  PubMed  CAS  Google Scholar 

  • Orive M (2001) Somatic mutations in organisms with complex life histories. Theor Pop Biol 59:235–249

    Article  CAS  Google Scholar 

  • Otto SP, Hastings IM (1998) Mutation and selection within the individual. Genetica 102(103):507–524

    Article  PubMed  Google Scholar 

  • Paland S, Lynch M (2006) Transitions to asexuality result in excess amino acid substitutions. Science 311:990–992

    Article  PubMed  CAS  Google Scholar 

  • Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544

    Article  Google Scholar 

  • Pineda-Krch M, Fagerström T (1999) On the potential for evolutionary change in meristemaic cell lineages through intraorganismal selection. J Evol Biol 12:681–688

    Article  Google Scholar 

  • Pineda-Krch M, Lehtilä K (2002) Cell lineage dynamics in stratified shoot apical mersistems. J Theor Biol 219:495–505

    Article  PubMed  Google Scholar 

  • Pineda-Krch M, Lehtilä K (2004) Costs and benefits of genetic heterogeneity within organisms. J Evol Biol 17:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Reusch TBH (2000) Five microsatellite loci in eelgrass Zostera marina and a test of cross-species amplification in Z. noltii and Z. japonica. Mol Ecol 9:371–373

    Article  PubMed  CAS  Google Scholar 

  • Reusch TBH (2002) Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. Limnol Oceanogr 47:78–85

    Article  Google Scholar 

  • Reusch TBH, Boström C, Stam WT, Olsen JL (1999a) An ancient eelgrass clone in the Baltic Sea. Mar Ecol Prog Ser 183:301–304

    Article  Google Scholar 

  • Reusch TBH, Stam WT, Olsen JL (1999b) Microsatellite loci in eelgrass Zostera marina reveal marked polymorphism within and among populations. Mol Ecol 8:317–322

    Article  PubMed  CAS  Google Scholar 

  • Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci USA 102:2826–2831

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D. Reidel Publishing Company, Boston

    Google Scholar 

  • Spielmann D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  Google Scholar 

  • Sutherland WJ, Watkinson AR (1986) Somatic mutation: do plants evolve differently? Nature 320:305

    Article  Google Scholar 

  • Tomlinson PB (1974) Vegetative morphology and meristem dependence—the foundation of productivity in seagrasses. Aquaculture 4:107–130

    Article  Google Scholar 

  • Weismann A (1892) Das Keimplasma: eine Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Whitham TG, Slobodchikoff CN (1981) Evolution by individuals, plant herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49:287–292

    Article  Google Scholar 

Download references

Acknowledgments

We thank Olivia Roth and Christophe Eizauirre for comments and support with the statistical analysis. Comments by two anonymous referees and the subject matter editor, Isabelle Olivieri, greatly helped improving the manuscript. Silke Carstensen helped with the genotyping. Camilla Roos, Jan Ekebom and Kevin O’Brien are acknowledged for help with field collections in the Archipelago Sea. Finnish Ministry of Environment provided financial support through the VELMU-programme. C.B. was financed by the Academy of Finland, (Project SEASCAPE 200689, grant number 80509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten B. H. Reusch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10682_2010_9436_MOESM1_ESM.eps

Fig. S1 Mean fluorescent signal intensity (± 95% confidence intervals) for main peaks (=alleles, filled) and stutter bands (open) of different heterozygous genotypes for 2 hypervariable microsatellite loci in Zostera marina, ZosmarGA17H (a) and ZosmarGA35 (b), for heterozygous genotypes different one to 3 + repeat units. These confidence intervals were used to distinguish mosaic microsatellite alleles from other artifacts. All diagrams combine at least 3 different independent analyses. The first (longest) allelic peak (Black bar) was set at 1. All eletropherograms were obtained using an ABI 3130xl or 3100 capillary sequencer and the pop4 polymer. Supplementary material 1 (EPS 690 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reusch, T.B.H., Boström, C. Widespread genetic mosaicism in the marine angiosperm Zostera marina is correlated with clonal reproduction. Evol Ecol 25, 899–913 (2011). https://doi.org/10.1007/s10682-010-9436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-010-9436-8

Keywords

Navigation