Skip to main content
Log in

The evolution of host manipulation by parasites: a game theory analysis

  • Original paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Many parasites are known to manipulate the behaviour of intermediate hosts in order to increase their probability of transmission to definitive hosts. This manipulation must have costs. Here we explore the combined effects of three such costs on the amount of effort a parasite should expend on host manipulation. Manipulation can have direct costs to future reproductive success due to energy expended to manipulate the host. There may also be indirect costs if other parasites infect the host and profit from the manipulation without paying the cost of manipulation. These “free riders” may impose a third cost by competing with manipulators for resources within the host. Using game theory analysis and several different competition models we show that intrahost competition will decrease the investment that a parasite should make in manipulation but that manipulation can, under some circumstances, be a profitable strategy even in the presence of non-manipulating competitors. The key determinants of the manipulator’s success and its investment in manipulation are the relatedness among parasites within the host, the ratio of the passive transmission rate to the efficiency of increasing transmission rate and the strength of competitive effects. Manipulation, when exploited by others, becomes an altruistic behaviour. Thus we suggest that our model may be generally applicable to cases where organisms can exploit the investment of others (possibly kin) while also competing with the organism whose investment they exploit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite interactions: regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Brown SP (1999) Cooperation and conflict in host-manipulating parasites. Proc Royal Soc Lond B 266:1899–1904

    Article  Google Scholar 

  • Brown SP (2001) Collective action in an RNA virus. J Evol Biol 14:821–828

    Article  Google Scholar 

  • Brown SP, Hochberg ME, Grenfell BT (2002) Does multiple infection select for raised virulence? Trends Microbiol 10:401–405

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, De Lorgeril J, Joly C, Thomas F (2003) Field evidence for density-dependent effects in the trematode Microphallus papillorobustus in its manipulated host, Gammarus insensibilis. J Parasitol 89:668–672

    Article  CAS  PubMed  Google Scholar 

  • Carney WP (1969) Behavioral and morphological changes in carpenter ants harboring Dicrocoeliid metacercariae. Am Midl Nat 82:605–611

    Article  Google Scholar 

  • Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Dezfuli BS, Giari L, Poulin R (2001) Costs of intraspecific and interspecific host sharing in acanthocephalan cystacanths. Parasitology 122:483–489

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Juricic E, Smith R, Kacelnik A (2005) Increasing the costs of conspecific scanning in socially foraging starlings affects vigilance and foraging behaviour. Anim Behav 69:73–81

    Article  Google Scholar 

  • Fredensborg BL, Poulin R (2005) Larval helminths in intermediate hosts: does competition early in life determine the fitness of adult parasites? Int J Parasitol 35:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetic evolution of social behaviour. I & II. J Theor Biol 7:1–51

    Article  CAS  PubMed  Google Scholar 

  • Helluy S, Holmes JC (1990) Serotonin, octopamine, and the clinging behaviour induced by the parasite Polymorphus paradoxus (Acanthocephala) in Gammarus lacustris (Crustacea). Can J Zool 68:1214–1220

    Article  CAS  Google Scholar 

  • Helluy S, Thomas F (2003) Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc Royal Soc Lond B 270:563–568

    Article  CAS  Google Scholar 

  • Jäger I, Schjørring S (2006) Multiple infections: relatedness and time between infections affect the establishment and growth of the cestode Schistocephalus solidus in its stickleback host. Evolution 60:616–622

    PubMed  Google Scholar 

  • Kearn GC (1998) Parasitism and the platyhelminths. Chapman & Hall, London

    Google Scholar 

  • Keeney DB, Waters JM, Poulin R (2007) Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. Int J Parasitol 37:351–357

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD, Morris AK (1996) Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390–1397

    Article  Google Scholar 

  • Lagrue C, Poulin R, Keeney DB (2009) Effects of clonality in multiple infections on the life-history strategy of the trematode Coitocaecum parvum in its amphipod intermediate host. Evolution 63:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Michaud M, Milinski M, Parker GA, Chubb JC (2006) Competitive growth strategies in intermediate hosts: experimental tests of a parasite life-history model using the cestode, Schistocephalus solidus. Evol Ecol 20:39–57

    Article  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, Oxford

    Google Scholar 

  • Mouritsen KN, Jensen KT (1997) Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator. Mar Ecol Prog Ser 151:123–134

    Article  Google Scholar 

  • Ohtsuka Y, Toquenaga Y (2008) Pioneer-follower dilemma game in Acanthosceledis obtectus (Coleoptera: Bruchidae). J Ethol (in press–online copy)

  • Øverli Ø, Pàll M, Borg B, Jobling M, Winberg S (2001) Effects of Schistocephalus solidus infection on brain monoaminergic activity in female three-spined sticklebacks Gaterosteus aculeatus. Proc Royal Soc Lond B 268:1411–1415

    Article  Google Scholar 

  • Parker GA, Chubb JC, Roberts GN, Michaud M, Milinski M (2003) Optimal growth strategies of larval helminths in their intermediate hosts. J Evol Biol 16:47–54

    Article  CAS  PubMed  Google Scholar 

  • Poulin R (1994) The evolution of parasite manipulation of host behaviour: a theoretical analysis. Parasitology 109:S109–S118

    PubMed  Google Scholar 

  • Poulin R (1998) Evolutionary ecology of parasites: from individuals to communities. Chapman & Hall, London

    Google Scholar 

  • Poulin R, Fredensborg BL, Hansen E, Leung TLF (2005) The true cost of host manipulation by parasites. Behav Process 68:241–244

    Article  Google Scholar 

  • Queller DC (1994) Genetic relatedness in viscous populations. Evol Ecol 80:70–73

    Article  Google Scholar 

  • Romig T, Lucius R, Frank W (1980) Cerebral larvae in the second intermediate host of Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium hospes Looss, 1907 (Trematoda, Dicrocoeliidae). Zeitschrift für Parasitenkunde 63:277–286

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Dick TA (1983) Development and infectivity of the procercoid of Triaenophorus crassus forel and mortality of the first intermediate host. Can J Zool 61:2120–2128

    Article  Google Scholar 

  • Sandland GJ, Goater CP (2000) Development and intensity-dependence of Ornithodiplostomum ptychocheilus metacercariae in fathead minnows (Pimephales promelas). J Parasitol 86:1056–1060

    CAS  PubMed  Google Scholar 

  • Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Process 68:185–199

    Article  Google Scholar 

  • Thompson SN, Kavaliers M (1994) Physiological bases for parasite induced alterations of behaviour. Parasitology 109:S119–S138

    Article  PubMed  Google Scholar 

  • Vickery WL, Giraldeau L-A, Templeton JJ, Kramer DL, Chapman CA (1992) Producers, scroungers, and group foraging. Am Nat 137:847–863

    Article  Google Scholar 

  • Webber RA, Rau ME, Lewis DJ (1987) The effects of Plagiorchis noblei (Trematoda: Plagiorchiidae) metacercariae on the behaviour of Aedes aegypti larvae. Can J Zool 65:1340–1342

    Article  Google Scholar 

  • West SA, Buckling A (2003) Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc Lond B 270:37–44

    Article  Google Scholar 

  • West SA, Murray MG, Machado CA, Griffin AS, Herre EA (2001) Testing Hamilton’, s rule with competition between relatives. Nature 409:510–513

    Article  CAS  PubMed  Google Scholar 

  • Wickler W (1976) Evolution-oriented ethology, kin selection, and altruistic parasites. Zeitschrift für Tierpsychologie 42:206–214

    CAS  PubMed  Google Scholar 

  • Wilson DS (1977) How nepotistic is the brain worm? Behav Ecol Sociobiol 2:421–425

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Natural Scientific and Engineering Research Council of Canada and by the Marsden Fund of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Vickery.

Appendices

Appendix 1: Comparison of analyses based on five different competition models

  1. (a)

    Fitness equations used for the competition models

MODEL

$$ {\text{Logistic}}\quad \left( {1 - x - {\raise0.7ex\hbox{$N$} \!\mathord{\left/ {\vphantom {N K}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$K$}}} \right)\left( {p_{0} + bN\overline{x} } \right) $$
$$ {\text{Monod }}\quad \left( {{\frac{K - N}{a + K - N}} - x} \right)\left( {p_{0} + bN\overline{x} } \right) $$
$$ {\text{Ricker }}\quad e^{{\left( {1 - x - {\raise0.7ex\hbox{$N$} \!\mathord{\left/ {\vphantom {N K}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$K$}}} \right)}} \left( {p_{0} + bN\overline{x} } \right) $$
$$ {\text{Hassell }}\quad \left( {{\frac{1}{{\left( {1 + {\frac{{\left( {\lambda - 1} \right)N}}{K}}} \right)^{h} }}} - x} \right)\left( {p_{0} + bN\overline{x} } \right) $$
$$ {\text{Shared}}\,{\text{resources }}\quad \left( {{\frac{1}{N}} - x} \right)\left( {p_{0} + bN\overline{x} } \right) $$
  1. (b)

    ESS investment in host manipulation (x*)

MODEL

$$ {\text{Logistic }}\quad {\frac{{\left( {K - N} \right)\left( {1 + r\left( {N - 1} \right)} \right)}}{{K\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} - {\frac{{p_{0} }}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} $$
$$ {\text{Monod}}\quad {\frac{{\left( {K - N} \right)\left( {1 + r\left( {N - 1} \right)} \right)}}{{\left( {q + K - N} \right)\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} - {\frac{{p_{0} }}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} $$
$$ {\text{Ricker }}\quad {\frac{{1 + r\left( {N - 1} \right)}}{N}} - {\frac{{p_{0} }}{bN}} $$
$$ {\text{Hassell }}\quad {\frac{{1 + r\left( {N - 1} \right)}}{{\left( {N + 1 + r\left( {N - 1} \right)} \right)H}}} - {\frac{{p_{0} }}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad {\text{where}}\,H = \left( {1 + {\frac{{N\left( {\lambda - 1} \right)}}{K}}} \right)^{h} $$
$$ {\text{Shared}}\,{\text{resources }}\quad {\frac{{1 + r\left( {N - 1} \right)}}{{N\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} - {\frac{{p_{0} }}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} $$
  1. (c)

    Proportional decrease in x* at p 0 = 0 due to competition

MODEL

$$ {\text{Logistic }}\quad {\frac{N}{K}} $$
$$ {\text{Monod }}\quad {\frac{q}{q + K - N}} $$
$$ {\text{Ricker }}\quad {\frac{{1 + r\left( {N - 1} \right)}}{N}} $$
$$ {\text{Hassell }}\quad 1 - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 H}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$H$}}\quad {\text{where }}\,H = \left( {1 + {\frac{{N\left( {\lambda - 1} \right)}}{K}}} \right)^{h} $$
$$ {\text{Shared}}\,{\text{resources }}\quad {\frac{N - 1}{N}} $$

(Note: Almost all of these proportions are positive which suggests that competition decreases investment when the passive transmission rate is 0).

  1. (d)

    dx*/dN (The effect of parasite load on investment in host maipulation) (When the differential is negative, investment should decrease as parasite load increases.)

MODEL

$$ \begin{aligned} {\text{Logistic}} & \quad {\frac{{\left( {1 + r} \right)p_{0} }}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}} - {\frac{{K\left( {1 - r} \right) + r\left( {2N^{2} - 1} \right) + r*\left( {1 - r} \right)\left( {N - 1} \right)^{2} }}{{K\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}} \\ & {\text{which}}\,{\text{is}}\,{\text{negative}}\quad {\text{when}}\,{\raise0.7ex\hbox{${p_{0} }$} \!\mathord{\left/ {\vphantom {{p_{0} } b}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$b$}} < {\frac{1 - r}{1 + r}} + {\frac{{\left( {1 - r} \right)^{2} }}{{K\left( {1 + r} \right)}}} + {\frac{{rN\left( {N\left( {1 + r} \right) + 2\left( {1 - r} \right)} \right)}}{{K\left( {1 + r} \right)}}} \\ \end{aligned} $$
$$ \begin{aligned} {\text{Monod}} & \quad {\frac{{p_{0} \left( {1 + r} \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} + {\frac{{\left( {q + K - N} \right)\left( {\left( {r\left( {K - 2N} \right) - \left( {1 - r} \right)} \right) - \left( {K - N} \right)\left( {1 + r} \right)\left( {1 + r\left( {N - 1} \right)} \right)} \right) + \left( {K - N} \right)\left( {1 + r\left( {N - 1} \right)} \right)}}{{\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} \\ & {\text{which}}\,{\text{is}}\,{\text{negative}}\quad {\text{when}}\,{\raise0.7ex\hbox{${p_{0} }$} \!\mathord{\left/ {\vphantom {{p_{0} } b}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$b$}}\,<\,{\frac{{\left( {1 - r} \right)K^{2} - \left( {1 - r} \right)\left( {2N - q} \right)K + \left( {1 + r} \right)rN^{2} + \left( {1 - r} \right)2rN + \left( {1 - r} \right)^{2} }}{{\left( {q + K - N} \right)\left( {1 + r} \right)}}} \\ \end{aligned} $$
$$ \begin{aligned} {\text{Ricker}} & \quad {\frac{{p_{0} - b + br}}{{bN^{2} }}} \\ & {\text{which}}\,{\text{is}}\,{\text{negative}}\quad {\text{when }}\,{\raise0.7ex\hbox{${p_{0} }$} \!\mathord{\left/ {\vphantom {{p_{0} } b}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$b$}} < 1 - r \\ \end{aligned} $$
$$ \begin{aligned} {\text{Hassell}} & \quad {\frac{{2ph\left( {\lambda - 1} \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)\left( {K + N\left( {\lambda - 1} \right)} \right)}}} - {\frac{{\left( {1 + r\left( {N - 1} \right)} \right)h\left( {\lambda - 1} \right)}}{{H\left( {N + 1 + r\left( {N - 1} \right)} \right)\left( {K + N\left( {\lambda - 1} \right)} \right)}}} - {\frac{r}{{H\left( {N + 1 + r\left( {N - 1} \right)} \right)}}} + {\frac{{p\left( {1 + r} \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}} - {\frac{{\left( {1 + r} \right)\left( {1 + r\left( {N - 1} \right)} \right)}}{{H\left( {N + 1 + r\left( {N - 1} \right)^{2} } \right)}}} \\ & {\text{which}}\,{\text{is}}\,{\text{negative}}\quad {\text{when}}\,{\raise0.7ex\hbox{${p_{0} }$} \!\mathord{\left/ {\vphantom {{p_{0} } b}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$b$}} < {\frac{{\left( {N + 1 + r\left( {N - 1} \right)} \right)\left( {1 + r\left( {N - 1} \right)} \right)h\left( {\lambda - 1} \right) + \left( {1 - r} \right)\left( {K + N\left( {\lambda - 1} \right)} \right)}}{{H\left( {1 + r} \right)\left( {K + N\left( {\lambda - 1} \right)} \right)}}} \\ \end{aligned} $$
$$ \begin{aligned} {\text{Shared}}\,{\text{resources}} & \quad {\frac{{p_{0} \left( {1 + r} \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}} - {\frac{{r^{2} \left( {N - 1} \right)^{2} + \left( {N^{2} - 2} \right)r + \left( {2N + 1} \right)}}{{\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} N^{2} }}} \\ & {\text{which}}\,{\text{is}}\,{\text{negative}}\quad {\text{when }}\,\left( {{\raise0.7ex\hbox{${p_{0} }$} \!\mathord{\left/ {\vphantom {{p_{0} } b}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$b$}} < {\frac{{r^{2} \left( {N - 1} \right)^{2} + \left( {N^{2} - 2} \right)r + \left( {2N + 1} \right)}}{{N^{2} \left( {1 + r} \right)}}}} \right) \\ \end{aligned} $$
  1. (e)

    dx*/dr (The effect of relatedness on investment)

MODEL

$$ {\text{Logistic }}\quad {\frac{{N\left( {K - N} \right)\left( {N - 1} \right)}}{{K\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}} - {\frac{{p_{0} \left( {N - 1} \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}}\quad{\text{which}}\,{\text{is}}\,{\text{positive}}\quad {\text{when}}\,N < K $$
$$ {\text{Monod }}\quad {\frac{{\left( {N - 1} \right)\left( {bN\left( {K - N} \right) + p_{0} \left( {q + K - N} \right)} \right)}}{{b\left( {q + K - N} \right)\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}}\quad{\text{which}}\,{\text{is}}\,{\text{positive}}\quad {\text{when}}\,N < K $$
$$ {\text{Ricker }}\quad {\frac{N - 1}{N}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Hassell }}\quad {\frac{{\left( {N + 1} \right)\left( {{\raise0.7ex\hbox{${bN}$} \!\mathord{\left/ {\vphantom {{bN} H}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$H$}} + p_{0} } \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Shared}}\,{\text{resources }}\quad {\frac{{\left( {N - 1} \right)\left( {b + p_{0} } \right)}}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)^{2} }}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
  1. (f)

    dx*/db (The effect of conversion efficiency on investment in host manipulation)

MODEL

$$ {\text{Logistic }}\quad {\frac{{p_{0} }}{{b^{2} \left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad {\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Monod}}\quad {\frac{{p_{0} }}{{b^{2} \left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad {\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}}\quad {\text{if}}\,p_{0} > 0 $$
$$ {\text{Ricker }}\quad {\frac{{p_{0} }}{{b^{2N} }}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Hassell }}\quad {\frac{{p_{0} }}{{b^{2} \left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Shared}}\,{\text{resources }}\quad {\frac{{p_{0} }}{{b^{2} \left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
  1. (g)

    dx*/dp 0 (The effect of passive transmission rate on investment in host manipulation)

MODEL

$$ {\text{Logistic }}\quad {\frac{ - 1}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{negative}} $$
$$ {\text{Monod }}\quad {\frac{ - 1}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{negative}} $$
$$ {\text{Ricker }}\quad {\frac{ - 1}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{negative}} $$
$$ {\text{Hassell }}\quad {\frac{ - 1}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{negative}} $$
$$ {\text{Shared}}\,{\text{resources }}\quad {\frac{ - 1}{{b\left( {N + 1 + r\left( {N - 1} \right)} \right)}}}\quad{\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{negative}} $$
  1. (h)

    dx*/dK (The effect of reducing competition intensity (increasing K) on investment in host manipulation)

MODEL

$$ {\text{Logistic }}\quad \left\{ {{\frac{{N\left( {rN + 1 - r} \right)}}{{K^{2} \left( {N + 1 + r\left( {N - 1} \right)} \right)}}}} \right\}\quad {\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Monod }}\quad {\frac{{q\left( {1 + r\left( {N - 1} \right)} \right)}}{{\left( {N + 1 + r\left( {N - 1} \right)} \right)\left( {q + K - N} \right)^{2} }}}\quad {\text{which}}\,{\text{is}}\,{\text{always}}\,{\text{positive}} $$
$$ {\text{Ricker}}\quad 0\,\left( {{\text{The}}\,{\text{strength}}\,{\text{of}}\,{\text{competition}}\,{\text{has}}\,{\text{no}}\,{\text{effect}}\,{\text{on}}\,{\text{investment}}\,{\text{in}}\,{\text{host}}\,{\text{manipulation}}.} \right) $$
$$ {\text{Hassell }}\quad {\frac{{Nh\left( {\lambda - 1} \right)}}{{HK\left( {K + N\left( {\lambda - 1} \right)\left( {N + 1 + r\left( {N - 1} \right)} \right)} \right)}}}\quad {\text{which}}\,{\text{is}}\,{\text{positive}}\quad {\text{when}}\,N < K $$

Shared resources (Does not apply)

Appendix 2: Evaluation of non-linear models

We explore possible effects of a non linear version of Eq. 1 using:

$$ W = \left( {1 - x - {\raise0.7ex\hbox{$N$} \!\mathord{\left/ {\vphantom {N K}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$K$}}} \right)\left( {p_{0} + bN^{a} \overline{x} } \right) $$
(A1)

where a is a parameter which describes the shape of the combined effects of all the parasites in the host on the host’s susceptibility to predation by the parasite’s definitive host. When a exceeds one the combined effect of the parasites exceeds the sum of the individual effects producing a certain synergy; when a is less than one, the combined effect is less than the sum of the individual effects. When a = 1, Eq. A1 becomes Eq. 1.

Most of the inferences drawn from Eq. 1 are also supported by analysis of Eq. A1. For all positive values of a, increases in competition should decrease the investment in host manipulation and the proportional decrease is described by Eq. 4. As in the linear model, investment should increase as relatedness, r, and as manipulation efficiency, b, increase; investment should decrease as the passive transmission rate, p 0, increases. Analysis of the non linear model differs from the linear model only with respect to the effect of increases in parasite load. In this case, Eq. 5 describing the conditions under which investment should increase as parasite load increases becomes

$$ {\raise0.7ex\hbox{${p_{0} }$} \!\mathord{\left/ {\vphantom {{p_{0} } b}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$b$}} > {\raise0.7ex\hbox{${\left( {1 - r} \right)N^{a} }$} \!\mathord{\left/ {\vphantom {{\left( {1 - r} \right)N^{a} } {\left( {\left( {1 + r} \right)aN - \left( {1 - a} \right)\left( {1 - r} \right)} \right)}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\left( {\left( {1 + r} \right)aN - \left( {1 - a} \right)\left( {1 - r} \right)} \right)}$}} . $$
(A2)

This condition differs greatly from Eq. 5 because of the presence of N on the right hand side of the equation. If a < 1, indicating that the combined effect of several parasites is less than the sum of their individual effects, investment should decrease with increased parasite load at all passive transmission rates. Further, the range of passive transmission rates and parasite loads for which manipulation is profitable is greatly reduced compared to the linear model.

On the other hand, when a > 1, lower passive transmission rates (compared to the linear model) can generate increased manipulation as a function of increased parasite load while manipulation will be profitable under a wider range of passive transmission rates and parasite loads.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickery, W.L., Poulin, R. The evolution of host manipulation by parasites: a game theory analysis. Evol Ecol 24, 773–788 (2010). https://doi.org/10.1007/s10682-009-9334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9334-0

Keywords

Navigation