Skip to main content
Log in

Differential survival among genotypes of Daphnia pulex differing in reproductive mode, ploidy level, and geographic origin

  • Original paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamowicz SJ, Gregory TR, Marinone MC et al (2002) New insights into the distribution of polyploid Daphnia: the holarctic revisited and Argentina explored. Mol Ecol 11:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Aguilera X, Mergeay J, Wollebrants A et al (2007) Asexuality and polyploidy in Daphnia from the tropical Andes. Limnol Oceanogr 52:2079–2088

    Google Scholar 

  • Angers B, Schlosser IJ (2007) The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol Ecol 16:4562–4571

    Article  CAS  PubMed  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after ‘‘long-distance’’ dispersal. Evolution Int J org Evolution 9:347–348

    Google Scholar 

  • Barata C, Hontoria F, Amat F et al (1996) Demographic parameters of sexual and parthenogenetic Artemia: temperature and strain effects. J Exp Mar Bio Ecol 196:329–340

    Article  Google Scholar 

  • Beaton MJ, Hebert PDN (1988) Geographical parthenogenesis and polyploidy in Daphnia pulex. Am Nat 132:837–845

    Article  Google Scholar 

  • Boersma MD (1999) Environmental stress and local adaptation in Daphnia magna. Limnol Oceanogr 44:393–402

    Google Scholar 

  • Cuellar O (1994) Biogeography of parthenogenetic animals. Biogeographica 70:1–13

    Google Scholar 

  • Doeringsfeld MR, Schlosser IJ et al (2004) Phenotypic consequences of genetic variation in a gynogenetic complex of Phoxinus eos-neogaeus clonal fish (Pisces:Cyprinidae) inhabiting a heterogeneous environment. Evolution Int J org Evolution 58(6):1261–1273

    Google Scholar 

  • Dufresne F, Hebert PDN (1995) Polyploidy and clonal diversity in an arctic cladoceran. Heredity 75:45–53

    Article  Google Scholar 

  • Glesener RR, Tilman D (1978) Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am Nat 112:659

    Article  Google Scholar 

  • Haag CR, Ebert D (2004) A new hypothesis to explain geographical parthenogenesis. Ann Zool Fenn 41:539–544

    Google Scholar 

  • Hebert PDN, Finston TL (2001) Macrogeographic patterns of breeding system diversity in the Daphnia pulex group from the United States and Mexico. Heredity 87:153–161

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Schwartz SS, Ward RD et al (1993) Macrogeographic patterns of breeding system diversity in the Daphnia pulex group. I. Breeding systems of Canadian populations. Heredity 70:148–161

    Article  Google Scholar 

  • Hrbacek J (1987) Systematics and biogeography of Daphnia species in the northern temperate region. Memorie Dell’ Istituto Italiano Di Idrobiologia 45:37–76

    Google Scholar 

  • Innes DJ, Hebert PDN (1988) The origin and genetic basis of obligate parthenogenesis in Daphnia pulex. Evolution Int J org Evolution 42:1024–1035

    Google Scholar 

  • Jose C, Hebert Chatelain E et al (2009) Low flexibility of metabolic capacity in subarctic and temperate cytotypes of Daphnia pulex. Journal of Thermal Biology 34(2):70–75

    Article  Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20:495–502

    Article  PubMed  Google Scholar 

  • Lamatsch DK, Lampert KP, Fischer P et al. (2008) Diploid Amazon mollies (Poecilia formosa) show a higher fitness than triploid in clonal competition experiments. Evol Ecol. doi 10.1007/s10682-008-9264-2

  • Lewis WH (1980) Polyploidy: biological relevance. Plenum Press, New York

    Google Scholar 

  • Licht LE, Bogart JP (1989) Embryonic-development and temperature tolerance in diploid and polyploid salamanders (Genus-Ambystoma). Am Midl Nat 122:401–407

    Article  Google Scholar 

  • Little TJ, DeMelo R, Tailor DJ et al (1997) Genetic characterization of an arctic zooplankter: insights into geographic polyploidy. Proc. R. Soc. Lond., Series B Biol. Sci. 264:1363–1370

    Article  Google Scholar 

  • Lundmark M, Saura A (2006) Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas 143:23–32

    Article  PubMed  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q Rev Biol 59:257–290

    Article  Google Scholar 

  • Lynch M, Ennis R (1983) Resource availability, maternal effects, and longevity. Exp Gerontol 18:147–165

    Article  CAS  PubMed  Google Scholar 

  • Maynard-Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Parker ED, Niklasson M (2000) Genetic struture and evolution in pathenogenetic animals. In: Singh RS, Krimbas CB (eds) Evolutionary genetics: from molecules to morphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391:889–892

    Article  CAS  Google Scholar 

  • Schlosser IJ, Doeringsfeld MR, Elder JF et al (1998) Niche relationship of clonal and sexual fish in a heterogeneous landscape. Ecology 79:953–968

    Article  Google Scholar 

  • Schultze RJ (1982) Competition and adaptation among diploid and polyploid clones of unisexual fishes. In: Dingle H, Hergmann JP (eds) Evolution and genetics of life-histories. Springer Verlag, New-York, pp 103–109

    Google Scholar 

  • Stebbins GL (1984) Polyploidy and the distribution of arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1–13

    Google Scholar 

  • Stenberg P, Lundmark M, Knutelski S et al (2003) Evolution of clonality and polyploidy in a weevil system. Mol Biol Evol 20:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton, FL

    Google Scholar 

  • USEPA (1982) Daphnid acute toxicity test. Office of toxic substances, Washington, DC

    Google Scholar 

  • Vandel A (1928) La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. Bull Biol France Belg 62:164–281

    Google Scholar 

  • VanDoninck K, Schoen I, DeBruyn L et al (2002) A general purpose genotype in an ancient asexual. Oecologia 132:205–212

    Article  Google Scholar 

  • Vrijenhoek RC (1979) Factors affecting clonal diversity and coexistance. American Zoologist 19:787–797

    Google Scholar 

  • Vrijenhoek RC (1984) Ecological differentiation among clones: the frozen niche variation model. In: Wohrmann K, Loeschcke V (eds) Population biology and evolution. Springer Verlag, Heidelberg (Germany)

    Google Scholar 

  • Vrijenhoek RC, Pfeiler E (1997) Differential survival of sexual and asexual Poeciliopsis during environmental stress. Evolution Int J org Evolution 51:1593–1600

    Google Scholar 

  • Weider LJ (1993) A test for the general purpose genotype hypothesis: differential tolerance to thermal and salinity stress among Daphnia clones. Evolution Int J org Evolution 47:965–969

    Google Scholar 

  • Weider LJ, Hebert PDN (1987) Ecological and physiological differentiation among low-arctic clones of Daphnia pulex. Ecology 68:188–198

    Article  Google Scholar 

  • Weider LJ, Hobaek A (2003) Glacial refugia, haplotype distributions, and clonal richness of the Daphnia pulex complex in arctic Canada. Mol Ecol 12:463–473

    Article  CAS  PubMed  Google Scholar 

  • Weider LJ, Hobaek A, Colbourne JK et al (1999) Holarctic phylogeography of an asexual species complex I. Mitochondrial DNA variation in arctic Daphnia. Evolution Int J org Evolution 53:777–792

    Google Scholar 

  • Zhang L, Lefcort H (1991) The effects of ploidy level on the thermal distributions of brine shrimp Artemia parthenogenetica and its ecological implications. Heredity 66:445–452

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada and by a Canadian Funds for Innovation (CFI) to F. D. C. J. acknowledges a scholarship form Bionord from the Université du Québec à Rimouski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to France Dufresne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jose, C., Dufresne, F. Differential survival among genotypes of Daphnia pulex differing in reproductive mode, ploidy level, and geographic origin. Evol Ecol 24, 413–421 (2010). https://doi.org/10.1007/s10682-009-9314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9314-4

Keywords

Navigation