Skip to main content

Advertisement

Log in

Differential susceptibility to food stress in neonates of sexual and asexual mollies (Poecilia, Poeciliidae)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The maintenance of sex is still an evolutionary puzzle given its immediate costs. Stably coexisting complexes of asexually and sexually reproducing forms allow to study mechanisms that balance the costs and benefits of both asexual and sexual reproduction. Here, we tested whether coexisting asexual and sexual fish of the genus Poecilia differed in neonate mortality when exposed to environmental stress in the form of fluctuating temperatures and food deprivation. We find that asexual Amazon mollies, Poecilia formosa, are significantly more sensitive to food stress than their sexual relative Poecilia latipinna, but both are equally unaffected by variable temperatures. Differences in the susceptibility to environmental stress may contribute to diminishing the asexuals’ benefits of a higher intrinsic population growth rate and thus mediate stable coexistence of the two reproductive forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balsano JS, Rasch EM, Monaco PJ (1989) The evolutionary ecology of Poecilia formosa and its triploid associate. In: Meffe GK, Snelson FF (eds) Ecology and evolution of lifebearing fishes (Poeciliidae). Prentice Hall, New Jersey, pp 277–297

    Google Scholar 

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990. doi:10.1126/science.281.5385.1986

    Article  CAS  PubMed  Google Scholar 

  • Bell G (1982) The masterpiece of nature, the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc R Soc B Biol Sci 273:45–49. doi:10.1098/rspb.2005.3279

    Article  Google Scholar 

  • Charlesworth B (1990) Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res 55:199–221

    Article  CAS  PubMed  Google Scholar 

  • Choleva L, Apostolou A, Rab P, Janko K (2008) Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual host and expand beyond the ranges of their original sperm donors. Philos Trans R Soc Lond B Biol Sci 363:2911–2919. doi:10.1098/rstb.2008.0059

    Article  PubMed  Google Scholar 

  • Constantz GD (1989) Reproductive biology of poeciliid fishes. In: Meffe GK, Snelson FF (eds) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, New Jersey, pp 33–50

    Google Scholar 

  • Cooper T, Lenski R, Elena S (2005) Parasites and mutational load: an experimental test of the pluralistic theory for the evolution of sex. Proc R Soc B Biol Sci 272:311–317

    Article  Google Scholar 

  • Dawley RM (1989) An introduction to unisexual vertebrates. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. Bulletin 466. New York State Museum, New York, pp 1–18

    Google Scholar 

  • Gabriel W, Bürger R (2000) Fixation of clonal lineages under Muller’s ratchet. Evol Int J Org Evol 54:1116–1125

    CAS  Google Scholar 

  • Gabriel W, Lynch M, Bürger R (1993) Muller’s ratchet and mutational meltdowns. Evol Int J Org Evol 47:1744–1757. doi:10.2307/2410218

    Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290. doi:10.2307/3544435

    Article  Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573. doi:10.1073/pnas.87.9.3566

    Article  CAS  PubMed  Google Scholar 

  • Heubel K (2004) Population ecology and sexual preferences in the mating complex of the unisexual Amazon molly Poecilia formosa (Girard, 1859). Dissertation, Universität Hamburg

  • Hubbs C (1964) Interactions between a bisexual fish species and its gynogenetic sexual parasite. Bull Tex Mem Mus 8:1–72

    Google Scholar 

  • Killick S, Carlsson A, West S, Little T (2006) Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. J Evol Biol 19:1603–1611. doi:10.1111/j.1420-9101.2006.01123.x

    Article  CAS  PubMed  Google Scholar 

  • Kokko H, Heubel KU, Rankin DJ (2008) How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites. Proc R Soc B Biol Sci 275:817–825

    Article  Google Scholar 

  • Kondrashov AS (1982) Selection against harmful mutations in large asexual and sexual populations. Genet Res 40:325–332

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–441. doi:10.1038/336435a0

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AS (1993) Classification of hypotheses on the advantage of amphimixis. J Hered 84:372–387

    CAS  PubMed  Google Scholar 

  • Kondrashov AS (1999) Being too nice may be not too wise. J Evol Biol 12:1031. doi:10.1046/j.1420-9101.1999.00127.x

    Article  Google Scholar 

  • Kondrashov AS, Houle D (1994) Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc R Soc B Biol Sci 258:221–227

    Article  CAS  Google Scholar 

  • Ladle RJ (1992) Parasites and sex: catching the Red Queen. Trends Ecol Evol 7:405–408. doi:10.1016/0169-5347(92)90021-3

    Article  Google Scholar 

  • Lampert KP, Schartl M (2008) The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos Trans R Soc Lond B Biol Sci 363:2901–2909. doi:10.1098/rstb.2008.0040

    Article  CAS  PubMed  Google Scholar 

  • Lampert KP, Lamatsch DK, Epplen JT, Schartl M (2005) Evidence for a monophyletic origin of triploid clones of the Amazon molly, Poecilia formosa. Evol Int J Org Evol 59:881–889

    CAS  Google Scholar 

  • Lively CM (1989) Adaptation by a parasitic trematode to local populations of its snail host. Evol Int J Org Evol 43:1663–1671. doi:10.2307/2409382

    Google Scholar 

  • Lively CM, Lloyd DG (1990) The cost of biparental sex under individual selection. Am Nat 135:489–500. doi:10.1086/285058

    Article  Google Scholar 

  • Lively CM, Craddock C, Vrijenhoek RC (1990) Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344:864–867. doi:10.1038/344864a0

    Article  Google Scholar 

  • Lively C, Lyons E, Peters A, Jokela J (1998) Environmental stress and the maintenance of sex in a freshwater snail. Evol Int J Org Evol 52:1482–1486. doi:10.2307/2411317

    Google Scholar 

  • Loewe L, Lamatsch DK (2008) Quantifying the threat of extinction from Muller’s ratchet in the diploid Amazon molly (Poecilia formosa). BMC Evol Biol 8:88. doi:10.1186/1471-2148-8-88

    Article  PubMed  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Niemeitz A, Kreutzfeldt R, Schartl M, Schlupp I (2002) Male mating behaviour of a molly, Poecilia latipunctata: a third host for the sperm-dependent Amazon molly, Poecilia formosa. Acta Ethol 5:45–49. doi:10.1007/s10211-002-0065-2

    Article  Google Scholar 

  • Riesch R, Schlupp I, Plath M (2008) Female sperm limitation in natural populations of a sexual/asexual mating complex (Poecilia latipinna, Poecilia formosa). Biol Lett 4:266–269. doi:10.1098/rsbl.2008.0019

    Article  PubMed  Google Scholar 

  • Ryan MJ, Dries LA, Batra P, Hillis DM (1996) Male mate preferences in a gynogenetic species complex of Amazon mollies. Anim Behav 52:1225–1236. doi:10.1006/anbe.1996.0270

    Article  Google Scholar 

  • Salathé M, Kouyos RD, Bonhoeffer S (2008) The state of affairs in the kingdom of the Red Queen. Trends Ecol Evol 23:439–445. doi:10.1016/j.tree.2008.04.010

    Article  PubMed  Google Scholar 

  • Schartl M, Wilde B, Schlupp I, Parzefall J (1995) Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evol Int J Org Evol 49:827–835. doi:10.2307/2410406

    CAS  Google Scholar 

  • Schlupp I (2005) The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol Syst 36:399–417. doi:10.1146/annurev.ecolsys.36.102003.152629

    Article  Google Scholar 

  • Schlupp I, Ryan MJ (1996) Mixed-species shoals and the maintenance of a sexual-asexual mating system in mollies. Anim Behav 52:885–890. doi:10.1006/anbe.1996.0236

    Article  Google Scholar 

  • Schories S, Lampert KP, Lamatsch DK, Garcia de Leon FJ, Schartl M (2007) Analysis of a possible independent origin of triploid P. formosa outside of the Rio Purification river system. Front Zool 4:13. doi:10.1186/1742-9994-4-13

  • Semlitsch RD, Hotz H, Guex G-D (1997) Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the Frozen Niche Variation model. Evol Int J Org Evol 51:1249–1261. doi:10.2307/2411054

    Google Scholar 

  • Tobler M, Schlupp I (2005) Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): a case for the Red Queen? Biol Lett 1:166–168. doi:10.1098/rsbl.2005.0305

    Article  PubMed  Google Scholar 

  • Tobler M, Schlupp I (2008) Expanding the horizon: the Red Queen and potential alternatives. Can J Zool 86:765–773. doi:10.1139/Z08-056

    Article  Google Scholar 

  • Tobler M, Wahli T, Schlupp I (2005) Comparison of parasite communities in native and introduced populations of sexual and asexual mollies of the genus Poecilia. J Fish Biol 67:1072–1082. doi:10.1111/j.0022-1112.2005.00810.x

    Article  Google Scholar 

  • Vrijenhoek RC (1979) Factors affecting clonal diversity and coexistence. Am Zool 19:787–789

    Google Scholar 

  • Vrijenhoek RC (1994) Unisexual fish: model systems for studying ecology and evolution. Annu Rev Ecol Syst 25:71–96. doi:10.1146/annurev.es.25.110194.000443

    Article  Google Scholar 

  • Vrijenhoek RC, Pfeiler E (1997) Differential survival of sexual and asexual Poeciliopsis during environmental stress. Evol Int J Org Evol 51:1593–1600. doi:10.2307/2411211

    Google Scholar 

  • West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012. doi:10.1046/j.1420-9101.1999.00119.x

    Article  Google Scholar 

  • Wetherington JD, Schenck RA, Vrijenhoek RC (1989) The origins and ecological success of unisexual Poeciliopsis: the frozen niche-variation modell. In: Meffe GK, Snelson FF (eds) Ecology and evolution of lifebearing fishes (Poeciliidae). Prentice Hall, New Jersey, pp 259–275

    Google Scholar 

  • Wolfe L (1993) Inbreeding depression in Hydrophyllum appendiculatum: role of maternal effects, crowding, and parental mating history. Evol Int J Org Evol 47:374–386. doi:10.2307/2410058

    Google Scholar 

Download references

Acknowledgments

We thank Tami Thomason and Wendal Porter for technical support. This research project was approved by the Animal Care and Use Committee of the University of Oklahoma (AUS R05-014). Texas Parks & Wildlife issued the permit to collect fish (SPR-0305-045). Financial support came from the Basler Foundation for Biological Research, the Janggen-Poehn-Foundation, the Roche Research Foundation, and the Wolfermann-Nägeli-Foundation (to M.T.) as well as the University of Oklahoma Faculty Senate (to I.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tobler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobler, M., Schlupp, I. Differential susceptibility to food stress in neonates of sexual and asexual mollies (Poecilia, Poeciliidae). Evol Ecol 24, 39–47 (2010). https://doi.org/10.1007/s10682-008-9288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9288-7

Keywords

Navigation