Skip to main content
Log in

Wolbachia endosymbiont is essential for egg hatching in a parthenogenetic arthropod

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Wolbachia pipientis can induce a range of sex ratio distortions including parthenogenesis. Recently Wolbachia has been detected in the diploid, parthenogenetic, collembolan species Folsomia candida. In this paper we address the effect of Wolbachia on reproduction in F. candida. Wolbachia infection was removed by antibiotic and heat treatment, and quantitative PCR techniques confirmed the success of the treatments. Complete loss of Wolbachia-infection led to the production of normal clutch sizes, but was associated with full egg hatching failure. Our results demonstrate that F. candida is strictly dependent on Wolbachia to produce viable offspring. This is one of the few cases of obligatory Wolbachia infection in arthropods. Our data suggest a unique mechanism underlying Wolbachia-dependence of egg development. One of our more salient results is that hatching success increased in consecutive egg clutches of antibiotic-treated individuals, probably due to restoration of bacterial densities over time. These observations suggest that reproduction in F. candida is a threshold effect requiring a critical Wolbachia density as is hypothesized by the bacterial dosage model. Quantitative PCR analysis showed that heat or antibiotic treated individuals with egg hatching failure had low average bacterial densities, but bacterial densities were not significantly different from those of treated individuals with successfully eclosing eggs. Additional experiments with partially cured F. candida are needed to prove the dosage model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arakaki N, Miyoshi T, Noda H (2001) Wolbachia-mediated parthenogenesis in the predatory thrips Fanklintothrips vespiformis (Thysanoptera: Insecta). Proc R Soc Lond B Biol Sci 268:1011–1016. doi:10.1098/rspb.2001.1628

    Article  CAS  Google Scholar 

  • Bordenstein SR, Marshall ML, Fry AJ et al (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2:384–393

    CAS  Google Scholar 

  • Bouchon D, Rigaud T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc Lond B Biol Sci 265:1081–1090. doi:10.1098/rspb.1998.0402

    Article  CAS  Google Scholar 

  • Bourtzis K, Nirgianaki A, Markakis G et al (1996) Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144:1063–1073

    CAS  PubMed  Google Scholar 

  • Breeuwer JAJ, Werren JH (1993) Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135:565–574

    CAS  PubMed  Google Scholar 

  • Carson HL, Chang LS, Lyttle TW (1982) Decay of female sexual behavior under parthenogenesis. Science 218:68–70. doi:10.1126/science.218.4567.68

    Article  PubMed  Google Scholar 

  • Casiraghi M, McCall JW, Simoncini L et al (2002) Tetracycline treatment and sex-ratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol 32:1457–1468. doi:10.1016/S0020-7519(02)00158-3

    Article  CAS  PubMed  Google Scholar 

  • Czarnetzki AB, Tebbe CC (2004a) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol 6:35–44. doi:10.1046/j.1462-2920.2003.00537.x

    Article  CAS  PubMed  Google Scholar 

  • Czarnetzki AB, Tebbe CC (2004b) Diversity of bacteria associated with Collembola—a cultivation-independent survey based on PCR-amplified 16S rRNA genes. FEMS Microbiol Ecol 49:217–227. doi:10.1016/j.femsec.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465. doi:10.1016/j.cell.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  • Dallai R, Fanciulli PP, Frati F (1999) Chromosome elimination and sex determination in springtails (Insecta, Collembola). J Exp Zool 285:215–225. doi:10.1002/(SICI)1097-010X(19991015)285:3<;215::AID-JEZ4>;3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  • Dedeine F, Vavre F, Fleury F et al (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98:6247–6252. doi:10.1073/pnas.101304298

    Article  CAS  PubMed  Google Scholar 

  • Dedeine F, Bouletreau M, Vavre F (2005) Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity 95:394–400. doi:10.1038/sj.hdy.6800739

    Article  CAS  PubMed  Google Scholar 

  • Frati F, Negri I, Fanciulli PP et al (2004) High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae). Pedobiol 48:461–468. doi:10.1016/j.pedobi.2004.04.004

    Article  CAS  Google Scholar 

  • Hurst GDD, Jiggins FM, von der Schulenburg JHG et al (1999) Male-killing Wolbachia in two species of insect. Proc R Soc Lond B Biol Sci 266:735–740. doi:10.1098/rspb.1999.0698

    Article  Google Scholar 

  • Hurst GDD, Johnson AP, von der Schulenburg JHG et al (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156:699–709

    CAS  PubMed  Google Scholar 

  • Lawson ET, Mousseau TA, Klaper R et al (2001) Rickettsia associated with male-killing in a buprestid beetle. Heredity 86:497–505. doi:10.1046/j.1365-2540.2001.00848.x

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lo N, Casiraghi M, Salati E et al (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19:341–346

    CAS  PubMed  Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete, 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phyl Evol 40:772–794. doi:10.1016/j.ympev.2006.04.021

    Article  CAS  Google Scholar 

  • Negri I, Pellecchia M, Mazzoglio PJ et al (2006) Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/XO sex-determination system. Proc R Soc Lond B Biol Sci 273:2409–2416. doi:10.1098/rspb.2006.3592

    Article  CAS  Google Scholar 

  • Noda H, Koizumi Y, Zhang Q et al (2001) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31:727–737. doi:10.1016/S0965-1748(00)00180-6

    Article  CAS  PubMed  Google Scholar 

  • Normark BB (2003) The evolution of alternative genetic systems in insects. Annu Rev Entomol 48:397–423. doi:10.1146/annurev.ento.48.091801.112703

    Article  CAS  PubMed  Google Scholar 

  • Pannebakker BA, Schidlo NS, Boskamp GJF et al (2005) Sexual functionality of Leptopilina clavipes (Hymenoptera : Figitidae) after reversing Wolbachia-induced parthenogenesis. J Evol Biol 18:1019–1028. doi:10.1111/j.1420-9101.2005.00898.x

    Article  CAS  PubMed  Google Scholar 

  • Pannebakker BA, Loppin B, Elemans CPH et al (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci USA 104:213–215. doi:10.1073/pnas.0607845104

    Article  CAS  PubMed  Google Scholar 

  • Perotti MA, Clarke HK, Turner BD et al (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20:2372. doi:10.1096/fj.06-5870fje

    Article  CAS  PubMed  Google Scholar 

  • Pijls J, van Steenbergen HJ, van Alphen JJM (1996) Asexuality cured: The relations and differences between sexual and asexual Apoanagyrus diversicornis. Heredity 76:506–513. doi:10.1038/hdy.1996.73

    Article  Google Scholar 

  • Poinsot D, Bourtzis K, Markakis G et al (1998) Wolbachia transfer from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150:227–237

    CAS  PubMed  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Riparbelli MG, Giordano R, Callaini G (2006) Centrosome inheritance in the parthenogenetic egg of the collembolan Folsomia candida. Cell Tissue Res 326:861–872. doi:10.1007/s00441-006-0253-x

    Article  PubMed  Google Scholar 

  • Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440. doi:10.1093/bioinformatics/btg157

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Trichogramma (Hymenoptera, Trochogrammatidae) to revert to sex. Proc Natl Acad Sci USA 87:2424–2427. doi:10.1073/pnas.87.7.2424

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102. doi:10.1146/annurev.micro.53.1.71

    Article  CAS  PubMed  Google Scholar 

  • Timmermans MJTN, Marien J, Roelofs D, van Straalen NM, Ellers J (2004) Evidence for multiple origins of Wolbachia infection in springtails. Pedobiologia (Jena) 48:469–475. doi:10.1016/j.pedobi.2004.07.008

    Article  Google Scholar 

  • Timmermans MJTN, de Boer ME, Nota B, de Boer TE, Marien J, Klein-Lankhorst RM, van Straalen NM, Roelofs D (2007) Collembase: a repository for springtail genomics and soil quality assessment. BMC Genomics 8:341

    Article  PubMed  Google Scholar 

  • Timmermans MJTN, Roelofs D, Marien J, van Straalen NM (2008) Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. BMC Evol Biol 8:83

    Article  CAS  PubMed  Google Scholar 

  • Vandekerckhove TTM, Watteyne S, Willems A et al (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol Lett 180:279–286

    CAS  PubMed  Google Scholar 

  • Vandekerckhove TTM, Watteyne S, Bocksoen L et al (2000) Wolbachia-induced thelytoky in the springtail Folsomia candida (Hexapoda, Collembola).In: Proceedings of the first international Wolbachia conference, kolymbari 35–36

  • Veneti Z, Clark ME, Zabalou S et al (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164:545–552

    PubMed  Google Scholar 

  • Weeks AR, Breeuwer JAJ (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond B Biol Sci 268:2245–2251. doi:10.1098/rspb.2001.1797

    Article  CAS  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609. doi:10.1146/annurev.ento.42.1.587

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Hurst GDD, Zhang W et al (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394

    CAS  PubMed  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia—reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261:55–63. doi:10.1098/rspb.1995.0117

    Article  CAS  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE et al (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:1079–1092. doi:10.1371/journal.pbio.0040188

    Article  CAS  Google Scholar 

  • Zchori-Fein E, Roush RT, Hunter MS (1992) Male production induced by antibiotic-treatment in Encarsia formosa (Hymenoptera, Aphelinidae), an asexual Species. Experientia 48:102–105. doi:10.1007/BF01923619

    Article  Google Scholar 

  • Zchori-Fein E, Borad C, Harari AR (2006) Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiol Entomol 31:164–169. doi:10.1111/j.1365-3032.2006.00504.x

    Article  Google Scholar 

  • Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68:745. doi:10.1128/MMBR.68.4.745-770.2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JE was supported by the Netherlands Organization for Scientific Research, VIDI-grant 864.03.003. The authors thank Janine Mariën and Ciska Braam for technical assistance. The authors thank Nico van Straalen, Caroline Dingle, and Menno Schilthuizen for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacintha Ellers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmermans, M.J.T.N., Ellers, J. Wolbachia endosymbiont is essential for egg hatching in a parthenogenetic arthropod. Evol Ecol 23, 931–942 (2009). https://doi.org/10.1007/s10682-008-9282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9282-0

Keywords

Navigation