Skip to main content
Log in

Complex sex determination in the stinging nettle Urtica dioica

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The dioecious species Urtica dioica harbours wide variation in sex ratio of seeds. We conducted a series of crosses to analyse the genetic basis of sex determination in this species. Dutch populations of U. dioica contain low proportions of monoecious individuals beside male and female plants. Self-pollination of monoecious plants always yielded female, male and monoecious plants, generally in a ratio of one female to three male/monoecious individuals. This motivated us to write down a simple model in which gender is determined by one major sex-determination locus with four alleles. In the model males and monoecious plants have distinct genotypes but are both heterozygous at the sex-determination locus. We first made crosses among progeny obtained after self-pollination of monoecious plants. These crosses showed that the monoecious trait generally showed Mendelian inheritance and was passed on to the next generation via both pollen and seeds. Further crosses between monoecious plants and plants from dioecious system indicated that alleles from the dioecious system are often dominant. However, many exceptions to our genetic model are observed which suggest that dominance is incomplete and/or that more genes are involved in sex determination. We discuss to what extent sex determination genes explain the strongly biased seed sex ratios and argue that additional genes, for instance genes for female choice, must also be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216

    Article  PubMed  CAS  Google Scholar 

  • Bull JJ, Vogt RC, Bulmer MG (1982) Heritability of sex ratio in turtles with environmental sex determination. Evolution 36:333–341

    Article  Google Scholar 

  • Charlesworth D, Guttman DS (1999) The evolution of dioecy and plant sex chromosome systems. In: Ainsworth CC (ed) Sex determination in plants. BIOSIS Scientific Publishers Ltd, Oxford, pp 25–49

    Google Scholar 

  • Conn JS, Blum U (1981) Sex ratio of Rumex hastatulus: the effect of environmental factors and certation. Evolution 35:1108–1116

    Article  Google Scholar 

  • Correns C (1928) Bestimmung, Vererbung und Verteilung des Geschlechts bei den höheren Pflanzen. In: Baur E, Hartmann M (eds) Handbuch der Vererbungswissenschaft, vol 2. Verlag von Gebrüder Bornträger, Berlin

  • Corriveau JL, Coleman AW (1989) Rapid screening method to detect potential bi-parental inheritance of plastid DNA and results for over 200 angiosperms. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • De Jong TJ, van der Meijden E (2004) Sex ratio of some long-lived dioecious plants in a sand dune area. Plant Biol 6:616–620

    Article  PubMed  Google Scholar 

  • De Jong TJ, Nell H, Glawe GA (2005) Heritable variation in seed sex ratio of the stinging nettle (Urtica dioica). Plant Biol 7:190–194

    Article  PubMed  Google Scholar 

  • Delph LF (1999) Sexual dimorphism in life history. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer Verlag, Berlin, pp 149–174

    Google Scholar 

  • Dorken ME, Barrett SCH (2004) Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceaea). Proc R Soc Lond Series B 271:213–219

    Article  Google Scholar 

  • Galán F (1951) Analyse génétique de la monoecie et de la dioecie et de leur différence dans Ecballium elaterium. Acta Salmant Ciencias Sect Biologia 1:7–15

    Google Scholar 

  • Glawe GA, de Jong TJ (2005) Environmental conditions affect sex expression in monoecious, but not in male and female plants of Urtica dioica. Sex Plant Reprod 17:253–260

    Article  Google Scholar 

  • Glawe GA, de Jong TJ (2007) Inheritance of progeny sex ratio in Urtica dioica. J Evol Biol 20:133–140

    Article  PubMed  CAS  Google Scholar 

  • Glawe GA (2006) Sex ratio variation and sex determination in Urtica dioica. Thesis University Leiden, online at https://openaccess.leidenuniv.nl/handle/1887/4583

  • Greig-Smith P (1948) Biological flora of the British Isles. Urtica. J Ecol 36:339–355

    Article  Google Scholar 

  • Heemskerk M, Oliehoek J, de Jong TJ (1998) Eenhuizigheid en sex-ratio bij de Grote brandnetel (Urtica dioica L.). Gorteria 24:88–89

    Google Scholar 

  • Janick J, Stevenson EC (1955) Genetics of the monoecious character in spinach. Genetics 40:429–437

    PubMed  CAS  Google Scholar 

  • Kay QON, Stevens DP (1986) The frequency, distribution and reproductive biology of dioecious species in the native flora of Britain and Ireland. Bot J Linnean Soc 92:39–64

    Article  Google Scholar 

  • Louis JP (1989) Genes for regulation of sex differentiation and male fertility in Mercurialis annua. J Hered 80:104–111

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland MA

    Google Scholar 

  • Mather K (1949) Genetics of dioecy and monoecy in Ecballium. Nature 163:926

    Article  PubMed  CAS  Google Scholar 

  • Meurman O (1925) The chromosome behaviour of some dioecious plants and their relatives with special reference to the sex chromosomes. Societas Scientiarum Fennica 2:1–104

    Google Scholar 

  • Mutikainen P, Koskela T (2002) Population structure of a parasitic plant and its perennial host. Heredity 89:318–324

    Article  PubMed  CAS  Google Scholar 

  • Parker JS (1990) Sex chromosomes and sexual differentiation in flowering plants. Chromosomes Today 10:187–198

    CAS  Google Scholar 

  • Rick CM, Hanna GC (1943) Determination of sex in Asparagus officinalis L. Am J Bot 30:711–714

    Article  Google Scholar 

  • Rottenberg A (2000) Fertility of exceptional monoecious individuals in four dioecious plant species. Sex Plant Reprod 12:219–221

    Article  Google Scholar 

  • Saumitou-Laprade P, Cuguen J, Vernet P (1994) Cytoplasmic male sterility in plants: molecular evidence and the nucleo-cytoplasmic conflict. Trends Ecol Evol 9:431–435

    Article  Google Scholar 

  • Seal AG, McNeilage MA (1989) Sex and kiwifruit breeding. Acta Hortica 240:35–38

    Google Scholar 

  • Shannon RK, Holsinger KE (2007) The genetics of sex determination in stinging nettle (Urtica dioica). Sex Plant Reprod 20:35–43

    Article  CAS  Google Scholar 

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1998) Strassburger, Lehrbuch der Botanik. Spektrum Akademisher Verlag, Berlin

  • Strasburger E (1910) Sexuelle und apogame Fortpflanzung bei Urticaceen. Jahrbuch derWissenschaftlichen Botanik 47:245–288

    Google Scholar 

  • Tadeka S, Paszkowski J (2006) DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 115:27–35

    Article  CAS  Google Scholar 

  • Taylor DR (1994) The genetic basis of sex ratio in Silene alba (=S. latifolia). Genetics 136:641–651

    PubMed  CAS  Google Scholar 

  • Taylor DR (1996) Parental expenditure and offspring sex ratios in the dioecious plant Silene alba (=Silene latifolia). Am Nat 147:870–879

    Article  Google Scholar 

  • Taylor DR (1999) Genetics of sex ratio variation among natural populations of a dioecious plant. Evolution 53:55–62

    Article  Google Scholar 

  • Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35

    Article  PubMed  CAS  Google Scholar 

  • Testolin R, Cipriani G, Costa G (1995) Sex segregation ratio and gender expression in the genus Actinidia. Sex Plant Reprod 8:129–132

    Article  Google Scholar 

  • Webb CJ (1992) Sex ratios from seed in six families of Scandia geniculata (Apiaceae). NZ J Bot 30:401–404

    Google Scholar 

  • Werren JH, Beukeboom LW (1998) Sex determination, sex ratios, and genetic conflict. Ann Rev Ecol Syst 29:233–261

    Article  Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in flowering plants. Adv Genetics 9: 217–281

    Article  CAS  Google Scholar 

  • Wolf DE, Satkoski JA, White K, Rieseberg LH (2001) Sex determination in the androdioecious plant Datisca glomerata and its dioecious sister species D. cannabina. Genetics 159:1243–1257

    PubMed  CAS  Google Scholar 

  • Zangh Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in malereproductive cells to determine the potential for cytoplasmic inheritance in 295angiosperm species. Plant Cell Physiol 44:941–951

    Article  Google Scholar 

Download references

Acknowledgements

We thank Henk Nell for technical assistance, Leo Beukeboom, Peter Klinkhamer, Russ Lande, John Pannell and Klaas Vrieling for helpful comments and valuable suggestions, and Nicole van Dam, Heather Kirk, Ed van der Meijden and Remko Offringa for critically reading an earlier version of the manuscript. The comments of several patient referees were to the point and very helpful for improving the readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom J. de Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glawe, G.A., de Jong, T.J. Complex sex determination in the stinging nettle Urtica dioica . Evol Ecol 23, 635–649 (2009). https://doi.org/10.1007/s10682-008-9261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9261-5

Keywords

Navigation