Skip to main content
Log in

Age dependent sex allocation in the polygynous spotless starling

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Theoretical and empirical evidence suggests that avian females are able to manipulate the offspring sex ratio at birth. Although mating with an attractive male may induce females to skew the sex ratio toward males, the balance between the benefits of producing attractive sons and the costs of competing with other females for mates could vary with female age, a possibility that had not been previously explored. In this paper we increment experimentally the attractiveness of males of the polygynous spotless starling (Sturnus unicolor) by adding green plants to their nests, a trait involved in courtship, and look for female age-differential effects on offspring primary sex ratio. Young and middle aged females produced more sons in experimental than in control nests, as expected, but old females showed the opposite tendency. To explain this novel result, we speculate that older females are limited to produce the most costly sex because the physiological drawbacks imposed by ageing reduce their ability to compete with younger ones for the non-shareable resources offered by males. We discuss that this evolutionary scenario may be widespread in avian polygynous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Alvarez C (2006) Manipulation of primary sex-ratio: un updated review. Avian Poultry Biol Rev 17:1–20

    Article  Google Scholar 

  • Arenas M (2000) Inversión parental, estatus de emparejamiento e interferencia social en el estornino Negro, Sturnus unicolor: importancia del conflicto sexual en el desarrollo de estrategias de reproducción. MS dissertation, Universidad Complutense de Madrid

  • Bensch S (1996) Female mating status and reproductive success in the great reed warbler: is there a potential cost of polygyny that requires compensation? J Anim Ecol 65:283–296

    Article  Google Scholar 

  • Bensch S, Hasselquist D (1994) Higher rate of nest loss among primary than secondary females: infanticide in the great reed warbler. Behav Ecol Sociobiol 35:309–317

    Article  Google Scholar 

  • Blank JL, Nolan V (1983) Offspring sex ratio in red-winged blackbirds is dependent on maternal age. Proc Nat Acad Sci USA 80:6141–6145

    Article  PubMed  Google Scholar 

  • Brouwer L, Komdeur J (2004) Green nesting material has a function in mate attraction in the European starling. Anim Behav 67:539–548

    Article  Google Scholar 

  • Burley N (1981) Sex-ratio manipulation and selection for attractiveness. Science 211:721–722

    Article  PubMed  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Daunt F, Monaghan P, Wanless S, Harris MP, Griffiths R (2001) Sons and daughters: age-specific differences in parental rearing capacities. Funct Ecol 15:211–216

    Article  Google Scholar 

  • Dixon PM (1993) The bootstrap and the jackknife: describing the precision of ecological indices. In: Scheiner SM, Gurevich J (eds) Design and analysis of ecological experiments. Chapman & Hall, London

    Google Scholar 

  • Ellegren H, Gustafsson L, Sheldon BC (1996) Sex allocation in response to paternal attractiveness in a wild bird population. Proc Natl Acad Sci USA 93:11723–11728

    Article  PubMed  CAS  Google Scholar 

  • Fawcett TW, Kuijper B, Pen I, Weissing FJ (2007) Should attractive males have more sons? Behav Ecol 18:71–80

    Article  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Gwinner H (1997) The function of green plants in nests of European starlings Sturnus vulgaris. Behaviour 134:337–351

    Google Scholar 

  • Gwinner H, Oltrogge M, Trost L, Nienaber U (2000) Green plants in starling nests: effects on nestlings. Anim Behav 59:301–309

    Article  PubMed  Google Scholar 

  • Heg D, Dingemanse NJ, Lessells CM, Mateman AC (2000) Parental correlates of offspring sex ratio in Eurasian Oystercatchers. Auk 117:980–986

    Article  Google Scholar 

  • Hiraldo F, Herrera CM (1974) Dimorfismo sexual y diferenciación de edades en Sturnus unicolor Temm. Doñana Acta Vertebrata 1:149–170

    Google Scholar 

  • Ketterson ED, Nolan V, Sandell M (2005) Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both? Am Nat 166:S85–S98

    Article  PubMed  Google Scholar 

  • Krackow S, Tkadlec E (2001) Analysis of brood sex ratios: implications of offspring clustering. Behav Ecol Sociobiol 50:293–301

    Article  Google Scholar 

  • Langmore NE, Cockrem JF, Candy EJ (2002) Competition for female reproductive investment elevates testosterone levels in female dunnocks, Prunella modularis. Proc R Soc Lond B 269:2473–2478

    Article  CAS  Google Scholar 

  • Mazuc J, Bonneaud C, Chastel O, Sorci G (2003) Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecol Lett 6:1084–1090

    Article  Google Scholar 

  • Nager RG, Monaghan P, Griffiths R, Houston DC, Dawson R (1999) Experimental demonstration that offspring sex ratio varies with maternal condition. Proc Natl Acad Sci USA 96:570–573

    Article  PubMed  CAS  Google Scholar 

  • Parker TH (2002) Maternal condition, reproductive investment, and offspring sex ratio in captive Red Junglefowl (Gallus gallus). Auk 119:840–845

    Article  Google Scholar 

  • Pen I, Weissing FJ (2000) Sexual selection and the sex ratio: an ESS analysis. Selection 1:111–121

    Article  Google Scholar 

  • Pike TW, Petrie M (2003) Potential mechanisms of avian sex manipulation. Biol Rev 78:553–574

    Article  PubMed  Google Scholar 

  • Polo V, Veiga JP, Cordero PJ, Viñuela J, Monaghan P (2004) Female starlings adjust primary sex ratio in response to aromatic plants in the nest. Proc R Soc Lond B 271:1929–1933

    Article  Google Scholar 

  • Pribil S (2000) Experimental evidence for the cost of polygyny in the red-winged blackbird Agelaius phoeniceus. Behaviour 137:1153–1173

    Article  Google Scholar 

  • Saino S, Ambrosini R, Martinelli R, Calza S, Møller AP, Pilastro A (2002a) Offspring sexual dimorphism and sex-allocation in relation to parental age and paternal ornamentation in the barn swallow. Mol Ecol 11:1533–1544

    Article  CAS  Google Scholar 

  • Saino N, Ambrosini R, Martinelli R, Møller AP (2002b) Mate fidelity, senescence in breeding performance and reproductive trade-offs in the barn swallow. J Anim Ecol 71:309–319

    Article  Google Scholar 

  • Sheldon BC, Andersson S, Griffith SC, Ornborg J, Sendecka J (1999) Ultraviolet colour variation influences blue tit sex ratios. Nature 402:874–877

    Article  CAS  Google Scholar 

  • Slagsvold T, Lifjeld JT (1994) Polygyny in birds: the role of competition between females for male parental care. Am Nat 143:59–94

    Article  Google Scholar 

  • Smith HG, Ottosson U, Sandell M (1994) Intrasexual competition among polygynously mated female starlings (Sturnus vulgaris). Behav Ecol 5:57–63

    Article  Google Scholar 

  • Smith HG (2004) Selection for synchronous breeding in the European starling. Oikos 105:301–311

    Article  Google Scholar 

  • Smith RG, Betancourt L, Sun YX (2005) Molecular endocrinology and physiology of the aging central nervous system. Endocr Rev 26:203–250

    Article  PubMed  CAS  Google Scholar 

  • Thuman KA, Widemo F, Griffith SC (2003) Condition-dependent sex allocation in a lek-breeding wader, the ruff (Philomachus pugnax). Mol Ecol 12:213–218

    Article  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex of offspring. Science 179:90–92

    Article  PubMed  CAS  Google Scholar 

  • Veiga JP (2002). Estornino Negro—Sturnus unicolor. En: Enciclopedia Virtual de los Vertebrados Españoles. Carrascal LM, Salvador A (eds) Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

  • Veiga JP, Moreno J, Arenas M, Sánchez S (2002) Reproductive consequences for males of paternal vs territorial strategies in the polygynous spotless starling under variable ecological and social conditions. Behaviour 139:677–693

    Article  Google Scholar 

  • Veiga JP, Viñuela J, Cordero PJ, Aparicio JM, Polo V (2004) Experimentally increased testosterone affects social rank and primary sex ratio in the spotless starling. Horm Behav 46:47–53

    Article  PubMed  CAS  Google Scholar 

  • Veiga JP, Polo V, Viñuela J (2006) Nest green plants as a male signal and courtship display in the spotless starling. Ethology 112:196–204

    Article  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Wittingham LA, Schwabl H (2002) Maternal testosterone in tree swallow eggs varies with female aggression. Anim Behav 63:63–67

    Article  Google Scholar 

  • Whittingham LA, Valenaar SM, Poirier NE, Dunn PO (2002) Maternal condition and nestling sex ratio in house wrens. Auk 119:125–131

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. M. Aparicio, J. Carranza and L.M. Carrascal for their critical comments. This paper has also greatly benefited from comments of two anonymous referees. This work was supported by projects BOS2001-0703 of the Ministerio de Ciencia y Tecnología, CGL2004-00126/BOS and CGL2005-05611-C02-01/BOS of the Ministerio de Educación y Ciencia. The experimental manipulations were carried out under licence of the Consejería de Medio Ambiente y Desarrollo de la Comunidad de Madrid and the Ayuntamiento de Manzanares el Real (Madrid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pablo Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga, J.P., Polo, V. & Cordero, P.J. Age dependent sex allocation in the polygynous spotless starling. Evol Ecol 22, 167–176 (2008). https://doi.org/10.1007/s10682-007-9166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9166-8

Keywords

Navigation