Skip to main content
Log in

Selection and parasite evolution: a reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Selection in plant parasites for virulence on resistant hosts and the resulting effects on parasite fitness may be considered as a driving force in host-parasite coevolution. In the present study, we tested the hypothesis that a fitness cost may be associated with nematode virulence, using the interaction between the parthenogenetic species Meloidogyne incognita and tomato as a model system. The reproductive parameters of near-isogenic lines of the nematode, selected for avirulence or virulence against the tomato Mi resistance gene, were analysed and combined into a reproductive index that was taken as a measure of fitness. The lower fitness of the virulent lines on the susceptible tomato cultivar showed for the first time that a measurable fitness cost is associated with unnecessary virulence in the nematode. Although parthenogenesis should theoretically lead to little genetic variability, such cost may impose a direct constraint on the coevolution between the plant and the nematode populations, and suggests an adaptive significance of trade-offs between selected characters and fitness-related traits. These results indicate that, although plant resistance can be broken, it might prove durable in some conditions if the virulent nematodes are counterselected in susceptible plants, which could have important consequences for the management of resistant cultivars in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal AF, Lively CM (2003) Modelling infection as a two-step process combining gene-for-gene and matching allele genetics. Proc R Soc Lond B 270:323–334

    Article  CAS  Google Scholar 

  • Andow DA, Zwahlen C (2006). Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  PubMed  CAS  Google Scholar 

  • Beniers A, Mulder A, Schouten HJ (1995) Selection for virulence of Globodera pallida by potato cultivars. Fundam Appl Nematol 18:497–500

    Google Scholar 

  • Braham WS, Winstead NN (1957) Inheritance of resistance to root-knot nematodes in tomatoes. Proc Am Soc Hort Sci 69:372–377

    Google Scholar 

  • Burdon JJ (1987) Diseases and plant population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Castagnone-Sereno P (2002) Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica 124:193–199

    Article  CAS  Google Scholar 

  • Castagnone-Sereno P (2006) Genetic variability and adaptative evolution in parthenogenetic root-knot nematodes. Heredity 96:282–289

    Article  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno P, Bongiovanni M, Dalmasso A (1994a) Reproduction of virulent isolates of Meloidogyne incognita on susceptible and Mi-resistant tomato. J Nematol 26:324–328

    CAS  Google Scholar 

  • Castagnone-Sereno P, Wajnberg E, Bongiovanni M, Leroy F, Dalmasso A (1994b) Genetic variation in Meloidogyne incognita virulence against the tomato Mi resistance gene: evidence from isofemale line selection studies. Theor Appl Genet 88:749–753

    Article  CAS  Google Scholar 

  • Crill P (1977) An assessment of stabilizing selection in crop variety development. Annu Rev Phytopathol 15:185–202

    Article  Google Scholar 

  • Dalmasso A, Bergé JB (1978) Molecular polymorphism and phylogenetic relationship in some Meloidogyne spp.: application to the taxonomy of Meloidogyne. J Nematol 10:323–332

    CAS  PubMed  Google Scholar 

  • Eddaoudi M, Ammati M, Rammah H (1997) Identification of resistance breaking populations of Meloidogyne on tomatoes in Morocco and their effect on new sources of resistance. Fundam Appl Nematol 20:285–289

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the Bootstrap Chapman and Hall, New York

    Google Scholar 

  • Enjalbert J, Duan X, Leconte M, Hovmoller MS, De Vallavieille-Pope C (2005) Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Mol Ecol 14:2065–2073

    Article  PubMed  CAS  Google Scholar 

  • Fritz RS, Simms EL (1992) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. University of Chicago Press, Chicago

    Google Scholar 

  • Goodnight CJ, Schwartz JM (1997) A bootstrap comparison of genetic covariance matrices. Biometrics 53:1026–1039

    Article  Google Scholar 

  • Haigh J (1978) The accumulation of deleterious genes in a population: Muller’s ratchet. Theor Pop Biol 14:251–267

    Article  CAS  Google Scholar 

  • Heffner RA, Butler MJ, Reilly CK (1996) Pseudoreplication revisited. Ecology 77:2558–2562

    Article  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multivariate tests of significance. Biometrika 75:800–802

    Article  Google Scholar 

  • Holliday P (2001) A dictionary of plant pathology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Isakeit T, Jaster J (2005) Texas has a new pathotype of Peronosclerospora sorghi, the cause of sorghum downy mildew. Plant Dis 89:529–529

    Google Scholar 

  • Jarquin-Barberena H, Dalmasso A, De Guiran G, Cardin MC (1991) Acquired virulence in the plant parasitic nematode Meloidogyne incognita. I. Biological analysis of the phenomenon. Rev Nématol 14:299–303

    Google Scholar 

  • Johnson R (1981) Durable resistance: Definition of, genetic control, and attainment in plant breeding. Phytopathology 71:567–568

    Article  Google Scholar 

  • Kaloshian I, Williamson VM, Miyao G, Lawn D, Westerdahl BB (1996) ‘Resistance-breaking’ nematodes identified in California tomatoes. California Agr 50:18–19

    Article  Google Scholar 

  • Kirchner JW, Roy BA (2002) Evolutionary implications of host-pathogen specificity: fitness consequences of pathogen virulence traits. Evol Ecol Res 4:27–48

    Google Scholar 

  • Lange W, Müller J, De Bock TS (1993) Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet. Fundam Appl Nematol 16:447–454

    Google Scholar 

  • Lasserre F, Gigault F, Gauthier JP, Henry JP, Snadmeier M, Rivoal R (1996) Genetic variation in natural populations of the cereal cyst nematode (Heterodera avenae Woll.) submitted to resistant and susceptible cultivars of oat. Theor Appl Genet 93:1–8

    Article  CAS  Google Scholar 

  • Laterrot H (1975) Séries de lignées isogéniques de tomate ne différant que par certains gènes de résistance aux maladies. Phytopathol Mediter 14:129–130

    Google Scholar 

  • Leach JE, Vera Cruz CM, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224

    Article  PubMed  CAS  Google Scholar 

  • Lecoq H, Moury B, Desbiez C, Palloix A, Pitrat M (2004) Durable virus resistance in plants through conventional approaches: a challenge. Virus Res 100:31–39

    Article  PubMed  CAS  Google Scholar 

  • Leonard KJ, Czochor RJ (1980) Theory of genetic interactions among populations of plants and their pathogens. Annu Rev Phytopathol 18:237–258

    Article  Google Scholar 

  • Lively CM (1999) Migration, virulence and the geographic mosaic of adaptation by parasites. Am Nat 153:S34-S47

    Article  Google Scholar 

  • Lushai G, Loxdale HD andAllen JA (2003) The dynamic clonal genome and its adaptative potential. Biol J Linn Soc 79:193–208

    Article  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404

    Article  PubMed  Google Scholar 

  • Ornat C, Verdejo-Lucas S, Sorribas FJ (2001) A population of Meloidogyne javanica from Spain virulent to the Mi resistance gene in tomato. Plant Dis 85:271–276

    Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124:147–156

    Article  CAS  Google Scholar 

  • Roberts PA (1995) Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Annu Rev Phytopathol 33:199–221

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc (1990) SAS/STAT user’s guide. release 6.07. SAS Institute Inc., Cary

    Google Scholar 

  • Shaner G, Stromberg EL, Lacy GH, Barker KR, Pirone TP (1992) Nomenclature and concepts of pathogenicity and virulence. Annu Rev Phytopathol 30:47–66

    Article  PubMed  CAS  Google Scholar 

  • Starr JL, Cook R, Bridge J (2002).Plant resistance to parasitic nematodes. CABI Bioscience, Egham, UK

    Google Scholar 

  • Thrall PH, Burdon JJ (2003) Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–1737

    Article  PubMed  CAS  Google Scholar 

  • Thrall PH, Barrett LG, Burdon JJ, Alexander HM (2005) Variation in pathogen aggressiveness within a metapopulation of the Cakike maratima-Alternaria brassicola host-pathogen association. Plant Pathol 54:265–274

    Article  Google Scholar 

  • Triantaphyllou AC (1985) Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser JN, Carter CC (eds) An advanced treatise on meloidogyne, vol. 1. North Carolina State University Graphics, Raleigh pp 113–126

    Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    Article  PubMed  CAS  Google Scholar 

  • Turner SJ (1990) The identification and fitness of virulent potato cyst-nematode populations (Globodera pallida) selected on resistant Solanum hybrids for up to eleven generations. Ann Appl Biol 117:385–397

    Article  Google Scholar 

  • Tzortzakakis EA, Trudgill DL, Phillips MS (1998) Evidence for a dosage effect of the Mi gene on partially virulent isolates of Meloidogyne javanica. J Nematol 30:76–80

    CAS  PubMed  Google Scholar 

  • Van der Plank JE (1968) Disease resistance in plants. Academic Press, London New York

    Google Scholar 

  • Van der Plank JE (1975) Principles of plant infection. Academic Press, New York

    Google Scholar 

  • Vera Cruz CM, Bai J, Ona I, Leung H, Nelson RJ, Mew TW, Leach JE (2000) Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Natl Acad Sci USA 97:13500–13505

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293

    Article  PubMed  CAS  Google Scholar 

  • Zhan C, Mundt CC, Hoffer ME, McDonald BA (2002) Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J Evol Biol 15:634–647

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Guillemaud and Laurent Lapchin for stimulating discussion and anonymous reviewers for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Castagnone-Sereno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnone-Sereno, P., Bongiovanni, M. & Wajnberg, E. Selection and parasite evolution: a reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita . Evol Ecol 21, 259–270 (2007). https://doi.org/10.1007/s10682-006-9003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-006-9003-5

Keywords

Navigation