Skip to main content
Log in

Optimum reproduction and dispersal strategies of a clonal plant in a metapopulation: a simulation study with Hieracium pilosella

  • Research Article
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F.A. Bazzaz (1996) Plants in Changing Environments: Linking Physiological, Population, and Community Ecology University Press Cambridge

    Google Scholar 

  • G.F. Bishop A.J. Davy (1985) ArticleTitleDensity, and the commitment of apical meristems to clonal growth and reproduction in Hieracium pilosella. Oecologia 66 417–422 Occurrence Handle10.1007/BF00378308

    Article  Google Scholar 

  • G.F. Bishop A.J. Davy (1994) ArticleTitleBiological flora of the British Isles. Hieracium pilosella (Pilosella officinarum F Schultz & Schultz-Bip.) J. Ecol. 82 195–210

    Google Scholar 

  • L.C. Bliss (1971) ArticleTitleArctic and alpine plant life cycles. Ann Rev. Ecol. Syst. 2 405–438 Occurrence Handle10.1146/annurev.es.02.110171.002201

    Article  Google Scholar 

  • S.P. Ellner G. Fussmann (2003) ArticleTitleEffects of successional dynamics on metapopulation persistence. Ecology 84 882–889

    Google Scholar 

  • O. Eriksson (1992) ArticleTitleEvolution of seed dispersal and recruitment in clonal plants. Oikos 63 439–453

    Google Scholar 

  • O. Eriksson (1996) ArticleTitleRegional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77 248–258

    Google Scholar 

  • O. Eriksson (1997) Clonal life histories and the evolution of seed recruitment H. Kroon Particlede J. Groenendael Particlevan (Eds) The Ecology and Evolution of Clonal Plants Backhuys Publ. Leiden 211–226

    Google Scholar 

  • K. Frank Ch. Wissel (1998) ArticleTitleSpatial aspects of metapopulation survival – from model results to rules of thumb for landscape management. Landscape Ecol. 13 363–379 Occurrence Handle10.1023/A:1008054906030

    Article  Google Scholar 

  • R.P. Freckleton A.R. Watkinson (2002) ArticleTitleLarge-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J. Ecol 90 419–434 Occurrence Handle10.1046/j.1365-2745.2002.00692.x

    Article  Google Scholar 

  • A.J. Gray M.J. Crawley P.J. Edwards (Eds) (1987) Colonisation, Succession and Stability Blackwell Oxford

    Google Scholar 

  • Hanski I. (1999) Metapopulation Ecology. Oxford University Press

  • I. Hanski A. Moilanen M. Gyllenberg (1996) ArticleTitleMinimum viable metapopulation size. Am Nat. 147 527–541 Occurrence Handle10.1086/285864

    Article  Google Scholar 

  • Y. Harada (1999) ArticleTitleShort- vs Long-range disperser: the evolutionary stable allocation in a lattice-structured habitat J. Theor. Biol. 201 171–187 Occurrence Handle10.1006/jtbi.1999.1022 Occurrence Handle10600361

    Article  PubMed  Google Scholar 

  • Y. Harada Y. Iwasa (1994) ArticleTitleLattice population dynamics for plants with dispersing seeds and vegetative propagation. Res Popul. Ecol. 36 237–249

    Google Scholar 

  • S. Harrison (1994) Metapopulations and conservation P.J. Edwards R.M. May N.R. Webb (Eds) Large Scale Ecology and Conservation Biology Blackwell Oxford UK 111–128

    Google Scholar 

  • H. Hartmann (1955) ArticleTitleStudien über die vegetative Fortpflanzung in den Hochalpen Jahresber Naturf. Ges. Graubündens 86 3–168

    Google Scholar 

  • S.I. Higgins M.L. Cain (2002) ArticleTitleSpatially realistic plant metapopulation models and the colonization-competition trade-off. J. Ecol 90 616–626 Occurrence Handle10.1046/j.1365-2745.2002.00694.x

    Article  Google Scholar 

  • B.C. Husband S.C.H. Barrett (1996) ArticleTitleA metapopulation perspective in plant population biology J. Ecol 84 461–469

    Google Scholar 

  • M.P. Johnson (2000) ArticleTitleThe influence of patch demographies on metapopulations, with particular reference to successional landscapes. Oikos 88 67–74

    Google Scholar 

  • R. JohstK. Brandl S. Eber (2002) ArticleTitleMetapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98 263–270

    Google Scholar 

  • L. Klimeš J. Klimešova’ R. Hendriks J. Groenendael Particlevan (1997) Clonal plant architecture: a comparative analysis of form and function H. Kroon Particlede J. Groenendael Particlevan (Eds) The Ecology and Evolution of Clonal Plants Backhuys Publ. Leiden 1–29

    Google Scholar 

  • R. Law R.E.D. Cook R.J. Manlove (1983) ArticleTitleThe ecology of flower and bulbil production in Polygonum viviparum. Nordic J Bot. 3 559–565

    Google Scholar 

  • R. Levins (1969) ArticleTitleSome demographic and genetic consequences of environmental heterogeneity for biological control Bull. Entomol. Soc. Am. 15 237–240

    Google Scholar 

  • M.A. McPeek R.D. Holt (1992) ArticleTitleThe evolution of dispersal in spatially and temporally varying environments Am. Nat. 140 1010–1027

    Google Scholar 

  • J.A.J. Metz R.M. Nisbet S.A.H. Geritz (1992) ArticleTitleHow should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7 198–202

    Google Scholar 

  • R.J Obeso (2002) ArticleTitleThe cost of reproduction in plants New Phytol. 155 321–348

    Google Scholar 

  • P. Olejniczak (2001) ArticleTitleEvolutionary stable allocation to vegetative and sexual reproduction in plants Oikos 95 156–160

    Google Scholar 

  • P. Olejniczak (2003) ArticleTitleOptimal allocation to vegetative and sexual reproduction in plants: the effect of ramet density Evol. Ecol. 17 265–275

    Google Scholar 

  • I. Olivieri P. Gouyon (1997) Evolution of migration rate and other traits I.A. Hanski M.E. Gilpin (Eds) Metapopulation Biology: Ecology, Genetics, and Evolution Academic Press San Diego 293–324

    Google Scholar 

  • I. Olivieri Y. Michalakis P. Gouyon (1995) ArticleTitleMetapopulation genetics and the evolution of dispersal Am. Nat. 146 202–227

    Google Scholar 

  • Y. Piquot D. Petit M. Valero J. Cuguen P. Laguerie P. Vernet (1998) ArticleTitleVariation in sexual and asexual reproduction among young and old populations of the perennial macrophyte Sparganium erectum Oikos 82 139–148

    Google Scholar 

  • H.R. Pulliam (1988) ArticleTitleSources, sinks and population regulation Am. Nat. 132 652–661

    Google Scholar 

  • E.G. Reekie (1999) Resource allocation, trade-offs, and reproductive effort in plants T.O. Vuorisalo P.K. Mutikainen (Eds) Life History Evolution in Plants Kluwer Academic Publ. Dordrecht 173–193

    Google Scholar 

  • E.G. Reekie S. Budge J.L. Baltzer (2002) ArticleTitleThe shape of the trade-off function between reproduction and future performance in Plantago major and Plantago rugelii Can. J. Bot. 80 140–150

    Google Scholar 

  • S. Sakai (1995) ArticleTitleOptimal resource allocation to vegetative and sexual reproduction of a plant growing in a spatially varying environment J. Theor. Biol. 175 271–282

    Google Scholar 

  • B. Schmid (1990) ArticleTitleSome ecological and evolutionary consequences of modular organization and clonal growth in plants Evol. Trends Plants 4 25–34

    Google Scholar 

  • S.C. Stearns (1977) ArticleTitleThe evolution of life history traits A critique of the theory and a review of the data Ann. Rev. Ecol. Syst. 8 145–171

    Google Scholar 

  • S.C. Stearns (1992) The Evolution of Life Histories University Press Oxford

    Google Scholar 

  • S. Sutherland R.K. Vickery SuffixJr. (1988) ArticleTitleTrade-offs between sexual and asexual reproduction in the genus Mimulus Oecologia 76 330–335

    Google Scholar 

  • D. Tilman (1985) ArticleTitleThe resource ratio hypothesis of succession Am. Nat. 125 827–852

    Google Scholar 

  • J.M.J. Travis C. Dytham (1998) ArticleTitleThe evolution of dispersal in a metapopulation: a spatially explicit, individual-based model Proc. R. Soc. Lond. B 265 17–23

    Google Scholar 

  • R.S. Tripathi J.L. Harper (1973) ArticleTitleThe comparative biology of Agropyron repens (L.) Beauv., A. caninum (L.) Beauv. I. The growth of mixed populations established from tillers and from seeds J. Ecol. 61 353–368

    Google Scholar 

  • J. Groenendael Particlevan H. Kroon Particlede (1990) Clonal Growth in Plants SPB Academic Publishing The Hague

    Google Scholar 

  • L.C. Westley (1993) ArticleTitleThe effect of inflorescence bud removal on tuber production in Helianthus tuberosus L. (Asteraceae) Ecology 74 2136–2144

    Google Scholar 

  • E. Winkler M. Fischer (1999) ArticleTitleTwo fitness measures for clonal plants and the importance of spatial aspects Plant Ecol. 141 191–199

    Google Scholar 

  • E. Winkler J. Stöcklin (2002) ArticleTitleSexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: a grid-based simulation model Ann. Bot. 89 525–536 Occurrence Handle1:STN:280:DC%2BD38zls1Wlug%3D%3D Occurrence Handle12099525

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckart Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöcklin, J., Winkler, E. Optimum reproduction and dispersal strategies of a clonal plant in a metapopulation: a simulation study with Hieracium pilosella. Evol Ecol 18, 563–584 (2004). https://doi.org/10.1007/s10682-004-5144-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-004-5144-6

Keywords

Navigation