Skip to main content
Log in

Quo vadis wheat breeding: a case study in Central Europe

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bread wheat (Triticum aestivum) is one of the most important crop species. It has been further developed since its initial domestication, with significant acceleration of wheat breeding within the last 100 years. In this study, a set of 355 wheat accessions were selected to document the history of bread wheat breeding in Central Europe. Although six periods of breeding were assumed, a notable turning point was identified between periods 3 and 4 around the year 1970 based on phenotype and genotype data, dividing the more than 100 years of bread wheat breeding into only two periods. While the first period corresponded to the use of landraces and genetically diverse varieties for breeding, the second period was typically characterized by reliance on relatively few varieties, leading to modern varieties with very good yields and high resistance to lodging and powdery mildew. A drawback of these breeding programmes was a substantial reduction in genetic diversity. The analysis of population structure showed that genetic diversity is influenced more by pedigree than by the period of breeding. In total, five genetic populations were identified, corresponding (especially within the last 50 years) to the leading genotypes used in breeding programmes: Bankuti 1205, Mironovskaja 808 and Moisson. A high level of correlation was found between the genotype and phenotype data (R = 0.91; p < 0.01). The results of this study indicated the need to broaden the genetic diversity of bread wheat by including landraces and possibly wild relatives of crops in new breeding or prebreeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are provided in the supporting information and will be available at the time of publication. Material was obtained from the Prague Gene Bank upon purchase in the GRIN Czech database.

References

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphism of simple sequence repeat DNA in soybean. Genetics 132:131–139

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 274:227–274

    Article  CAS  Google Scholar 

  • Borlaug NE (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:287–297. https://doi.org/10.1007/s10681-007-9480-9

    Article  Google Scholar 

  • Charmet G (2011) Wheat domestication: lessons for future. C R Biol 334:212–220. https://doi.org/10.1016/j.crvi.2010.12.013

    Article  PubMed  Google Scholar 

  • Devos KM, Bryan GJ, Collins AJ, Stephenson P, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:241–252

    Article  Google Scholar 

  • Dvořáček V, Hermuth J, Dotlačil L, Prohasková A, Hauptvogel P (2014) Changing parameters of Czechoslovak obsolete and modern bread wheat cultivars (Triticum aestivum L.) over 90 years. Genet Resour Crop Evol 61:1159–1171. https://doi.org/10.1007/s10722-014-0098-1

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of cluster of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quatro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–2587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Hanišová A, Horčička P (2012) Wheat breeding progress in the Czech Republic. Breeding seminar 5-6.12.2012: Pšenice 2012 - Od genomu po chleba (Wheat 2012—from genome to bread). CRI, Prague, pp 4–9

  • Hernandez P, Laurie DA, Martin A, Snape JW (2002) Utility of wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and H. tritordeum. Theor Appl Genet 104:535–739

    Article  Google Scholar 

  • Heun M, Schafer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Hubisz M, Falush D, Stephens M, Pritchard J (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Korzun V, Röder MS, Worland AJ, Börner A (1997) Intrachromosomal mapping of the genes for dwarfing (Rht12) and vernalisation response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed 116:227–232

    Article  Google Scholar 

  • Le Couviour F, Faure S, Poupard B, Flodrops Y, Dubreuil P, Praud S (2011) Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theor Appl Genet 123:715–727. https://doi.org/10.1007/s00122-011-1621-9

    Article  PubMed  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T, Vikram P (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66(12):3477–3486. https://doi.org/10.1093/jxb/erv122

    Article  CAS  PubMed  Google Scholar 

  • Martynov S, Dobrotvorskaya T, Stehno Z, Dotlačil L (1997) Genetic diversity of Czech and Slovak wheat cultivars in the period 1954–1994. Genet Slecht 33:1–12

    Google Scholar 

  • Medini M, Hamza S, Rebai A, Baum M (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Gen Res Crop Evol 52:21–31

    Article  CAS  Google Scholar 

  • Miller MP (1997) TFPGA. Tools for population genetic analysis. Version 1.3. Northern Arizona University, Arizona

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen NH, Backes G, Stougaard J, Andersen SU, Jahoor A (2014) Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS ONE 9(4):e9400. https://doi.org/10.1371/journal.pone.0094000

    Article  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin. Accessed 20 Apr 2020

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340. https://doi.org/10.1023/A:1018361819215

    Article  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864. https://doi.org/10.1007/s00122-004-1881-8

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrels ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Article  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  CAS  PubMed  Google Scholar 

  • Saghai Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal locations, and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt AL, Gale KR, Ellis MH, Giffard PM (2004) Sequence variation at a microsatellite locus (Xgwm261) in hexaploid wheat (Triticum aestivum) varieties. Euphytica 135:239–246

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Šíp V, Chrpová J, Žofajová A, Pánková K, Užík M, Snape JW (2010) Effects of specific Rht and Ppd alleles on agronomic traits in winter wheat cultivars grown in middle Europe. Euphytica 172:221–233

    Article  Google Scholar 

  • Šíp V, Chrpová J, Žofajová A, Milec Z, Mihalik D, Pánková K, Snape JW (2011) Evidence of selective changes in winter wheat in middle-European environments reflected by allelic diversity at loci affecting plant height and photoperiodic response. J Agric Sci 149:313–326

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Trkulja D, Kondic-Spika A, Brbaklic L, Kobiljski B, Mikic S, Mirosavljevic M, Glogovac S, Surlan-Momirovic G (2019) Genetic structure and allelic richness of the wheat core collection for association mapping of yield. Zemdirbyste Agric 106:257–264. https://doi.org/10.13080/z-a.2019.106.033

    Article  Google Scholar 

  • Venske E, Schreinert dos Santos R, Busanello C, Gustafson P, Costa de Oliveira A (2019) Bread wheat: a role model for plant domestication and breeding. Hereditas 156:16. https://doi.org/10.1186/s41065-019-0093-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Worland AJ, Law CN (1986) Genetic analysis of chromosome 2D of wheat.1. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. J Plant Breed 96:331–345

    Google Scholar 

  • Yacoubi I, Nigro D, Sayar R, Masmoudi K, Seo YW, Brini F, Giove SL, Mangini G, Giancaspro A, Marcotuli I, Colasuonno P, Gadaleta A (2020) New insight into the North-African durum wheat biodiversity: phenotypic variations for adaptive and agronomic traits. Genet Res Crop Evol 67:445–455. https://doi.org/10.1007/s10722-019-00807-4

    Article  CAS  Google Scholar 

  • Yeh FC, Boyle T, Rongcai Y, Ye Z, Xiyan JM (1999) Popgene version 1.31. Microsoft window-based freeware for population genetic analysis. University of Alberta, Edmonton, Canada, http://www.ualberta.ca/~fyeh/. Accessed 11 Nov 2019

Download references

Acknowledgements

This work was supported by the Czech Ministry of Agriculture, project RO0418. The authors thank Hana Udavská for excellent technical assistance and AJE for English editing.

Funding

This work was supported by the Czech Ministry of Agriculture, project RO0418.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Leona Leišová-Svobodová, Jana Chrpová, Jiří Hermuth and Ladislav Dotlačil. The first draft of the manuscript was written by Leona Leišová-Svobodová, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. Leišová-Svobodová.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

List of all analysed samples with pedigree information (XLSX 37 kb)

Results of microsatellite analysis (XLSX 176 kb)

Results of phenotype analysis (XLSX 146 kb)

10681_2020_2670_MOESM4_ESM.xlsx

List of samples arranged in accordance with Figure S1 with the proportional membership of each genotype in 5 clusters K1–K5 (XLSX 36 kb)

10681_2020_2670_MOESM5_ESM.tif

Cluster analysis of PTT and PTM populations based on a Bayesian approach. Each genotype is represented by a bar divided into K colours, where K is the number of clusters assumed: 1—red; 2—green; 3—blue; 4—yellow; 5—violet. Individuals are sorted according to their breeding period (TIFF 5024 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leišová-Svobodová, L., Chrpová, J., Hermuth, J. et al. Quo vadis wheat breeding: a case study in Central Europe. Euphytica 216, 141 (2020). https://doi.org/10.1007/s10681-020-02670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02670-2

Keywords

Navigation