Skip to main content
Log in

RNA-Seq analysis of Orobanche resistance in Nicotiana tabacum: development of molecular markers for breeding recessive tolerance from ‘Wika’ tobacco variety

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Orobanche spp. (broomrape) is an obligate root parasite that can attack a wide spectrum of plants, including tobacco. It has been responsible for economic losses in Europe since 2002 and its incidence in many tobacco-growing countries is increasing. Preventive and curative methods exist, including the use of agrochemicals, however efficacy is limited and pest dissemination remains important due to a high rate of multiplication of the parasite and very small long lasting seeds. The tobacco variety ‘Wika’ induces lower or delayed germination of Orobanche seeds. This seems to be conditioned by a single recessive gene (Cailleteau et al. in: CORESTA Congress, Paris, 2006). Artificial testing in Petri dishes was developed to evaluate the ability of tobacco plantlets to stimulate seed germination. Different lines derived from ‘Wika’, with susceptible control lines, were tested and studied by RNA-Seq. Candidate markers including SNPs or genes differentially expressed between susceptible and resistant lines were identified. An F2 population segregating for ‘Wika’ recessive tolerance was then used for marker validation and mapping. All candidates were situated on chromosome 14 of the tobacco genetic map. The Nicotiana variety collection from Imperial Brands was also tested for these markers, highlighting or confirming other potential tolerant lines. KASP™ genotyping or markers for conventional gel electrophoresis are now available to drive the transfer of ‘Wika’ recessive tolerance into elite lines. RNA-Seq technology combined with sound experimental testing has again proven its high efficiency to identify useful markers for tobacco breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbes Z, Kharrat M, Pouvreau JB, Delavault P, Chaibi W, Simier P (2010) The dynamics of faba bean (Vicia faba L.) parasitism by Orobanche foetida. Phytopathol Mediterr 49:239–248

    Google Scholar 

  • Aly R (2007) Conventional and biotechnological approaches for control of parasitic weeds. Vitro Cell Dev Biol Plant 43:304–318

    Article  Google Scholar 

  • Bardaro N, Marcotrigiano AR, Bracuto V et al (2016) Genetic analysis of resistance to Orobanche crenata (Forsk.) in a pea (Pisum sativum L.) low-strigolactone line. J Plant Pathol 98:671–675

    Google Scholar 

  • Barker ER, Press MC, Scholes JD, Quick WP (1996) Interactions between the parasitic angiosperm Orobanche aegyptiaca and its tomato host: growth and biomass allocation. New Phytol 133:637–642

    Article  Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P et al (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Brault M, Betsou F, Jeune B, Tuquet C, Sallé G (2007) Variability of Orobanche ramosa populations in France as revealed by cross infestations and molecular markers. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2007.06.009

    Article  Google Scholar 

  • Brault-Hernandez (2006) Lorobanche rameuse en France, Le couple Orobanche ramosa L./Nicotiana tabacum L.: biologie, spécificité et méthodes de lutte. Doctoral Thesis. Univ. Pierre et Marie Curie (Paris VI)

  • Brun G, Braem L, Thoiron S, Gevaert K, Goormachtig S, Delavault P (2017) Seed germination in parasitic plants: what insights can we expect from strigolactone research? J Exp Bot. https://doi.org/10.1093/jxb/erx472

    Article  Google Scholar 

  • Buschmann H, Gonsior G, Sauerborn J (2005) Pathogenicity of branched broomrape (Orobanche ramosa) populations on tobacco cultivars. Plant Pathol. https://doi.org/10.1111/j.1365-3059.2005.01211.x

    Article  Google Scholar 

  • Cailleteau B, Mornet F, Verrrier JL (2006) A genetically determined trait in flue-cured tobacco results in low germination of Orobanch ramose L. seed. In: CORESTA Congress, Paris, 2006 (Oral presentation)

  • Cardoso C, Ruyter-Spira C (2005) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci. https://doi.org/10.1016/j.plantsci.2010.11.007

    Article  Google Scholar 

  • Ćavar S, Zwanenburg B, Tarkowski P (2015) Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochem Rev 14:691–711

    Article  Google Scholar 

  • Covarelli L (2002) Studies on the control of broomrape (Orobanche ramosa L.) in virginia tobacco (Nicotiana tabacum L.). Contrib Tob Res. https://doi.org/10.2478/cttr-2013-0733

    Article  Google Scholar 

  • Darvishzadeh R (2016) Genetic variability, structure analysis, and association mapping of resistance to broomrape (Orobanche aegyptiaca Pers.) in tobacco. J Agric Sci Technol 18:1407–1418

    Google Scholar 

  • Díaz-Ruiz R, Torres AM, Satovic Z, Gutierrez MV, Cubero JI, Román B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919

    Article  PubMed  Google Scholar 

  • Dor E, Alperin B, Wininger S, Ben-Dor B, Somvanshi VS, Koltai H et al (2009) Characterization of a novel tomato mutant resistant to the weedy parasites Orobanche and Phelipanche spp. Euphytica. https://doi.org/10.1007/s10681-009-0041-2

    Article  Google Scholar 

  • Dor E, Yoneyama K, Wininger S, Kapulnik Y, Yoneyama K, Koltai H et al (2011) Genetics and resistance strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 101:213–222

    Article  CAS  PubMed  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD et al (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom. https://doi.org/10.1186/s12864-017-3791-6

    Article  Google Scholar 

  • Eizenberg H, Hershenhorn D, Eizenberg J, Plakhine Y, Rubin B (2003) Resistance to broomrape (Orobanche spp.) in sunflower (Helianthus annuus L.) is temperature dependent. J Exp Bot 54(395):1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Aparicio M, Westwood JH, Rubiales D (2011) Agronomic, breeding, and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany 89(12):813–826

    Article  Google Scholar 

  • Fernández-Aparicio M, Kisugi T, Xie X, Rubiales D, Yoneyama K (2014) Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J Agric Food Chem 62:7063–7071

    Article  PubMed  Google Scholar 

  • Fernández-Aparicio M, Reboud X, Gibot-Leclerc S (2016) Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00135

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibot-Leclerc S, Brault M, Pinochet X, Sallé G (2003) Potential role of winter rape weeds in the extension of broomrape in Poitou-Charentes. C R Biol 326(7):645–658

    Article  PubMed  Google Scholar 

  • Habimana S, Nduwumuremyi A, Chinama RJD (2014) Management of Orobanche in field crops: a review. J Soil Sci Plant Nutr. https://doi.org/10.4067/S0718-95162014005000004

    Article  Google Scholar 

  • Joel DM, Hershenhorn J, Eizenberg H, Aly R, Ejeta G, Rich PJ et al (2007) Biology and management of weedy root parasites. In: Janick J (ed) Horticultural reviews. Wiley, Hoboken. https://doi.org/10.1002/9780470168011.ch4

    Chapter  Google Scholar 

  • Julio E, Cotucheau J, Volpatti C, Decorps R, Sentenac C, Candresse T, Dorlhac de borne F (2015) A eukaryotic translation initiation factor 4E (eIF4E) is responsible for the “va” tobacco recessive resistance to potyviruses. Plant Mol Biol Rep 1:1. https://doi.org/10.1007/s11105-014-0775-4

    Article  CAS  Google Scholar 

  • Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S et al (2010) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61(6):1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrousse P, Arnaud MC, Serieys H, Bervillé A, Thalouarn P (2001) Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann Bot 88:859–868

    Article  Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ et al (2008) The Ups and downs of genome size evolution in polyploid species of nicotiana (solanaceae). Ann Bot 101:805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letousey P, De Zélicourt A, Vieira Dos Santos C, Thoiron S, Monteau F, Simier P et al (2007) Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol. https://doi.org/10.1111/j.1365-3059.2007.01575.x

    Article  Google Scholar 

  • Lim KY, Matyasek M, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Reports of the International Polyploidy Conference, London, UK, 27–30 April 2003

  • Lins RD, Colquhoun JB, Mallory-Smith CA (2007) Effect of small broomrape (Orobanche minor) on red clover growth and dry matter partitioning. Weed Sci 55:517–520

    Article  CAS  Google Scholar 

  • Manschadi AM, Kroschel J, Sauerborn J (1996) Dry matter production and partitioning in the host-parasite-association Vicia faba Orobanche crenata. J Appl Bot 70:224–229

    Google Scholar 

  • Manschadi AM, Sauerborn J, Stutzel H (2001) Quantitative aspects of Orobanche crenata infestation in faba beans as affected by abiotic factors and parasite soil seedbank. Weed Res 41:311–324

    Article  Google Scholar 

  • Ocaña-Moral S, Gutiérrez N, Torres AM, Madrid E (2017) Saturation mapping of regions determining resistance to Ascochyta blight and broomrape in faba bean using transcriptome-based SNP genotyping. Theor Appl Genet 130:2271–2282

    Article  PubMed  Google Scholar 

  • Parker C (1994) The present state of the Orobanche problem. Biology and management of Orobanche. In: Proceedings of the third international workshop on Orobanche and related Striga research, Amsterdam, Netherlands, 8–12 November 1993, pp 17–26. Royal Tropical Institute, Amsterdam, Netherlands

  • Parker C (2009) Observations on the current status of Orobanche and striga problems worldwide. Pest Manag Sci 65:453–459

    Article  CAS  PubMed  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB International, Wallingford, UK

    Google Scholar 

  • Pavan S, Schiavulli A, Marcotrigiano AR, Bardaro N, Bracuto V et al (2016) Characterization of low-strigolactone germplasm in Pea (Pisum sativum L.) resistant to Crenate Broomrape (Orobanche crenata Forsk.). Mol Plant Microbe Interact 29:743–749

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A, Jorrín J, Cubero JI, Rubiales D (2005a) Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45:379–387

    Article  Google Scholar 

  • Pérez-de-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J et al (2005b) Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann Bot 95:935–942

    Article  PubMed  PubMed Central  Google Scholar 

  • Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA et al (2011) Next generation Sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Rispail N, Dita MA, González-Verdejo C, Pérez-De-Luque A, Castillejo MA, Prats E et al (2007) Plant resistance to parasitic plants: molecular approaches to an old foe: Research review. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.01980.x

    Article  PubMed  Google Scholar 

  • Rubiales D (2003) Parasitic plants, wild relatives and the nature of resistance. New Phytol 160:459–461

    Article  PubMed  Google Scholar 

  • Rubiales D (2014) Legume breeding for broomrape resistance. Czech J Genet Plant Breed 50:144–150

    Article  Google Scholar 

  • Rubiales D (2018) Can we breed for durable resistance to broomrapes? Phytopathol Mediterr 57(1):170–185. https://doi.org/10.14601/Phytopathol_Mediterr-22543

    Article  Google Scholar 

  • Rubiales D, Rojas-Molina MM, Sillero JC (2016) Characterization of resistance mechanisms in Faba Bean (Vicia faba) against Broomrape Species (Orobanche and Phelipanche spp.). Front Plant Sci 7:1747. https://doi.org/10.3389/fpls.2016.01747

    Article  PubMed  PubMed Central  Google Scholar 

  • Samejima H, Sugimoto Y (2018) Recent research progress in combatting root parasitic weeds. Biotechnol Biotechnol Equip. https://doi.org/10.1080/13102818.2017.1420427

    Article  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  PubMed  Google Scholar 

  • Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Rev Am J Bot 99:257–266

    Article  CAS  Google Scholar 

  • Tong Z, Xiao B, Jiao F, Fang D, Zeng J, Wu X, Chen X, Yang J, Li Y (2016) Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. Breed Sci 66:381–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Vera R, Garcıa JM, Pozo MJ et al (2016) Expression of molecular markers associated to defense signalling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol Mol Plant Pathol 94:100–107

    Article  CAS  Google Scholar 

  • Trabelsi I, Abbes Z, Amri M, Kharrat M (2016) Study of some resistance mechanisms to Orobanche spp. infestation in faba bean (Vicia faba L.) breeding lines in Tunisia. Plant Prod Sci 19:562–573

    Article  Google Scholar 

  • Trabelsi I, Yoneyama K, Abbes Z, Amri M, Xie X, Kisugi T et al (2017) Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. South Afr J Bot 108:15–22

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T et al (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322

    Article  CAS  PubMed  Google Scholar 

  • Westwood JH (2000) Characterization of the Orobanche-Arabidopsis system for studying parasite-host interactions. Weed Sci 48:742–748

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117. https://doi.org/10.1146/annurev-phyto-073009-114453

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Xu L, Zhang N, Islam F, Song W et al (2017) iTRAQ-based proteomics of sunflower cultivars differing in resistance to parasitic weed Orobanche cumana. Proteomics. https://doi.org/10.1002/pmic.201700009

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoder JI, Scholes JD (2010) Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2010.04.011

    Article  PubMed  Google Scholar 

  • Yoshida S, Shirasu K (2012) Plants that attack plants: molecular elucidation of plant parasitism. Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2012.07.004

    Article  PubMed  Google Scholar 

  • Yoshida S, Cui S, Ichihashi Y, Shirasu K (2016) The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667. https://doi.org/10.1146/annurev-arplant-043015-111702

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Julio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julio, E., Malpica, A., Cotucheau, J. et al. RNA-Seq analysis of Orobanche resistance in Nicotiana tabacum: development of molecular markers for breeding recessive tolerance from ‘Wika’ tobacco variety. Euphytica 216, 6 (2020). https://doi.org/10.1007/s10681-019-2544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2544-9

Keywords

Navigation