Skip to main content
Log in

A single dominant gene/locus model for control of Fusarium oxysporum f. sp. lactucae race 1 resistance in lettuce (Lactuca sativa)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fusarium oxysporum f. sp. lactucae (FOLac) is responsible for significant economic losses across major lettuce-producing regions around the world. Thus far, only FOLac race 1 isolates have been reported associated with Fusarium wilt outbreaks in Brazil. The most sustainable strategy for disease control is the pyramidization of race-specific resistance factors in lettuce cultivars. The loose-leafy cultivar ‘Vanda’ was found as one of the most promising sources of resistance to FOLac race 1. The genetic basis of this resistance was determined by analyzing the reaction to this pathogen of segregating populations derived from the cross ‘Gisele’ (susceptible) × ‘Vanda’ (pollen donor). A single molecular marker-genotyped F1 hybrid plant was selfed and individual plants of a segregating F2 population as well as 63 families F2:F3 were inoculated with a FOLac race 1 isolate by using the root-dipping method (3 × 106 conidia/ml). Our results confirmed the high levels of resistance of ‘Vanda’ even under very harsh experimental conditions. Overall, the reaction of the F1 plants and the segregating patterns of the F2 population (n = 82) and of the F2:F3 families (n = 838 plants) fit a single dominant gene/locus model. However, the phenotypic expression of resistance might suffer effects of additional genetic factor(s) (e.g., locus dosage, minor modifying genes, and incomplete penetrance). Notwithstanding, the high levels of FOLac race 1 resistance and its relatively simple genetic control makes ‘Vanda’ a major germplasm source for lettuce-breeding programs aiming to incorporate this trait in a wide array of elite lines from distinct varietal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allex CF (1999) Computational methods for fast and accurate DNA fragment assembly. Ph.D. Thesis. University of Wisconsin, Wisconsin, Madison, USA. p 222

  • Alon H, Katan J, Kedar N (1974) Factors affecting penetrance of resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Phytopathology 64:455–461

    Article  Google Scholar 

  • Aruga D, Tsuchiya N, Matsumura H, Matsumoto E, Hayashida N (2012) Analysis of RAPD and AFLP markers linked to resistance to Fusarium oxysporum f. sp. lactucae race 2 in lettuce (Lactuca sativa L.). Euphytica 187:1–9

    Article  CAS  Google Scholar 

  • Boiteux LS, Fonseca MEN, Simon PW (1999) Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA based genetic fingerprinting analyses in carrot. J Am Soc Hortic Sci 124:32–38

    Article  CAS  Google Scholar 

  • Cabral CS, Reis A (2013) Screening of lettuce accessions for resistance to Fusarium oxysporum f. sp. lactucae race 1. Trop Plant Pathol 38:272–281

    Article  Google Scholar 

  • Cabral CS, Brunelli KR, Costa H, Fonseca MEN, Boiteux LS, Reis A (2014) Identification of Fusarium oxysporum f. sp. lactucae race 1 as the causal agent of lettuce wilt in Brazil. Trop Plant Pathol 39:197–202

    Article  Google Scholar 

  • Cabral CS, Fonseca MEN, Brunelli KR, Rossato M, Costa H, Boiteux LS, Reis A (2018) Relationships among Brazilian and worldwide isolates of Fusarium oxysporum f. sp. lactucae race 1 inferred from ribosomal intergenic spacer (IGS-rDNA) region and EF-1α gene sequences. Eur J Plant Pathol 152:81–94

    Article  CAS  Google Scholar 

  • D’Andrea L, Felber F, Guadagnuolo R (2008) Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environ Biosaf Res 7:61–71

    Article  Google Scholar 

  • Davis RM, Colyer PD, Rothrock CS, Kochman JR (2006) Fusarium wilt of cotton: population diversity and implications for management. Plant Dis 90:692–703

    Article  CAS  Google Scholar 

  • Dziechciarkova M, Lebeda A, Dolezalova I, Astley D (2004) Characterization of Lactuca spp. germplasm by protein and molecular markers—a review. Plant Soil Environ 50:47–58

    Article  CAS  Google Scholar 

  • Fujinaga M, Ogiso H, Tsuchiya N, Saito H (2001) Physiological specialization of Fusarium oxysporum oxysporum f. sp. lactucae, a causal organism of fusarium root rot of crisp head lettuce. J Gen Plant Pathol 67:205–206

    Article  Google Scholar 

  • Fujinaga M, Ogiso H, Tsuchiya N, Saito H (2003) Race 3, a new race of Fusarium oxysporum f. sp. lactucae determined by a differential system with commercial cultivars. J Gen Plant Pathol 69:23–28

    Article  Google Scholar 

  • Gilardi G, Franco Ortega S, van Rijswick PCJ, Ortu G, Gullino ML, Garibaldi A (2016) A new race of Fusarium oxysporum f. sp. lactucae of lettuce. Plant Pathol 66:677–688

    Article  Google Scholar 

  • Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235

    Article  CAS  Google Scholar 

  • Huang JH, Lo CT (1998) Wilt of lettuce caused by Fusarium oxysporum in Taiwan. Plant Pathol Bull 7:150–153

    Google Scholar 

  • Hubbard JC, Gerik JS (1993) A new disease of lettuce incited by Fusarium oxysporum f. sp. lactucum forma specialis nov. Plant Dis 77:750–754

    Article  Google Scholar 

  • Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12:1319–1329

    Article  CAS  Google Scholar 

  • Kesseli RV, Michelmore RW (1986) Genetic variation and phylogenies detected from isozyme markers in species of Lactuca. J Hered 77:324–331

    Article  CAS  Google Scholar 

  • Kesseli R, Ochoa O, Michelmore RW (1991) Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome 34:430–436

    Article  Google Scholar 

  • Lopes CA, Quezado-Duval A, Reis A (2010) Doenças da Alface. Brasília: Embrapa Vegetable Crops, Brasília, DF, Brazil

  • Matheron ME, Porchas M (2010) Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis 94:1323–1328

    Article  Google Scholar 

  • Matuo T, Motohashi S (1967) On Fusarium oxysporum f. sp. lactucae n.f. causing root of lettuce. Trans Mycol Soc Jpn 8:13–15

    Google Scholar 

  • McCreight JD, Matheron ME, Tickes BR, Plantts B (2005) Fusarium wilt race 1 on lettuce. HortScience 40:529–531

    Article  Google Scholar 

  • Michelmore RW (2010) Genetic variation in lettuce. California leafy greens research program. http://calgreens.org/control/uploads/Michelmore_Variation_report_2009-2010_final_(2)1.pdf

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA (PNAS) 88:9828–9832

    Article  CAS  Google Scholar 

  • Michelmore RW, Truco MJ, Ochoa OE (2011) Breeding crisphead and leafy lettuce. California leafy greens research program. http://calgreens.org/control/uploads/Breeding_Crisphead_and_Leafy_Lettuce.pdf

  • Millani MJ, Erebarian HR, Alizadeh A (1999) Occurrence of fusarium wilt of lettuce in Shahr-Ray, Varamim and Karaj areas. Iran J Plant Pathol 35:44–45

    Google Scholar 

  • Nagata RT (1992) Clip-and-wash method of emasculation for lettuce. HortScience 27:907–908

    Article  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  • Pasquali M, Dematheis F, Gilardi G, Gullino ML, Garibaldi A (2005) Vegetative compatibility groups of Fusarium oxysporum f. sp. lactucae from lettuce. Plant Dis 89:237–240

    Article  Google Scholar 

  • Pasquali M, Dematheis F, Gullino ML, Garibaldi A (2007) Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology 97:987–996

    Article  CAS  Google Scholar 

  • Ramalho MAP, Santos JB, Pinto CAB (2008) Genética na Agropecuária. 4th ed. Universidade Federal de Lavras, Lavras Minas Gerais State, MG, Brazil

  • Sala FC, Costa CD (2012) Retrospectiva e tendência da alfacicultura brasileira. Horticultura brasileira 30:187–194

    Article  Google Scholar 

  • Sala FC, Nascimento WM (2014) Produção de sementes de alface. In: Nascimento WM (ed). Produção de Sementes de Hortaliças. Embrapa Vegetable Crops, Brasília–DF, Brazil

  • Sandoya GV, Gurung S, Short DP, Subbarao KV, Michelmore RW, Hayes RJ (2017) Genetics of resistance in lettuce to races 1 and 2 of Verticillium dahliae from different host species. Euphytica 213:20

    Article  Google Scholar 

  • Santos JRM (1996) Methodology for screening tomato to Fusarium wilt, Verticillium wilt, gray leaf spot, early blight, and Septoria leaf spot. In: Proceedings of the international symposium on tropical tomato diseases. Recife, Pernambuco-PE, Brazil. pp 164–166

  • Schoeneweiss DF (1975) Predisposition, stress, and plant disease. Annu Rev Phytopathol 13:193–211

    Article  Google Scholar 

  • Schuster I, Cruz CD (2004) Estatística Genômica Aplicada a Populações Derivadas de Cruzamentos Controlados. UFV. Viçosa, Minas Gerais State, MG, Brazil

  • Scott JC, Kirkpatrick SC, Gordon TR (2010) Variation in susceptibility of lettuce cultivars to Fusarium wilt caused by Fusarium oxysporum f. sp. lactucae. Plant Pathol 59:139–146

    Article  Google Scholar 

  • Silva MP, Amaral AT Jr, Pereira MG, Rodrigues R, Daher RF, Posse SCP (2005) Diversidade genética e identificação de híbridos por marcadores RAPD em feijão-de-vagem. Acta Sci Agron 27:531–535

    Google Scholar 

  • Simko I (2009) Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 100:256–262

    Article  CAS  Google Scholar 

  • Simko I, Hayes RJ, Truco MJ, Michelmore RW (2011) Mapping a dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids. Euphytica 182:157–166

    Article  Google Scholar 

  • Subbarao KV (1998) Progress toward integrated management of lettuce crop. Plant Dis 82:1068–1078

    Article  Google Scholar 

  • Tsuchiya N, Yoshida K, Usui T, Tsukada M (2004) Resistance tests and genetic resources for breeding Fusarium root rot resistant lettuce. J Jpn Soc Hortic Sci 73:105–113

    Article  Google Scholar 

  • Uwimana B, D’Andrea L, Felber F, Hooftman DAP, Den Nijs HCM, Smulders MJM, Visser RGF, Van De Wiel CCM (2012a) A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.), and the recent expansion of L. serriola in Europe. Mol Ecol 21:2640–2654

    Article  Google Scholar 

  • Uwimana B, Smulders MJM, Hooftman DAP, Hartman Y, Van Tienderen PH, Jansen J, Mchale LK, Michelmore RW, Visser RGF, Van De Wiel CCM (2012b) Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC Plant Biol 12:43

    Article  Google Scholar 

  • Ventura JA, Costa H (2008) Fusarium wilt caused by Fusarium oxysporum on lettuce in Espírito Santo, Brazil. Plant Dis 92:976

    Article  CAS  Google Scholar 

  • Wang Y, Bao Z, Zhu Y, Hua J (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant Microbe Interact 22:498–506

    Article  CAS  Google Scholar 

  • Whitham S, Mccormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93:8776–8781

    Article  CAS  Google Scholar 

  • Yamauchi N, Shimazu J, Horiuchi S, Satou M, Shirakawa T (2004) Physiological races and vegetative compatibility groups of butterhead lettuce isolates of Fusarium oxysporum f. sp. lactucae in Japan. J Gen Plant Pathol 70:308–313

    Article  Google Scholar 

  • Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844

    Article  Google Scholar 

Download references

Acknowledgements

Maria Esther de N. Fonseca, Ailton Reis, and Leonardo S. Boiteux were supported by fellowships from the Brazilian National Research Council (CNPq). Cléia Santos Cabral was supported by fellowships from CAPES and CNPq. The authors are also grateful to Dr. Elizabeth Georgian, Dr. Maria Josė Truco, and Dr. Richard W. Michelmore (UC Davis) for their careful review of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailton Reis.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest.

Informed consent

All authors have reviewed the manuscript and approved its submission to Euphytica.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, C.S., Fonseca, M.E.N., Oliveira, V.R. et al. A single dominant gene/locus model for control of Fusarium oxysporum f. sp. lactucae race 1 resistance in lettuce (Lactuca sativa). Euphytica 215, 114 (2019). https://doi.org/10.1007/s10681-019-2441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2441-2

Keywords

Navigation