Skip to main content
Log in

Recent genetic research on Japanese soybeans in response to the escalation of food use worldwide

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Soybeans are an important ingredient in traditional foods of Japan, such as tofu, natto, miso, boiled beans, soy sauce, and edamame. Japanese soybeans have been subjected to selection for use as a food for many years and have different characteristics from those of oilseed soybeans. Useful genomic resources for studying Japanese soybeans, such as high-density linkage maps, chromosome segment substitution lines, genome sequences, high-density mutant libraries, and germplasm sets, have been developed. Because traditional foods made from Japanese soybeans are highly influenced by seed characteristics, comprehensive studies have been conducted on seed quality and composition using natural and mutant genetic resources, and several new varieties with special seed characteristics have been successfully developed. Recent advances in the genetic characterization of agriculturally important traits in Japanese soybeans, including plant type, physiological characteristics, and resistance to biotic and abiotic stresses will contribute to marker-assisted selection of new soybean varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe J, Xu DH, Suzuki Y, Kanazawa A, Shimamoto Y (2003) Soybean germplasm pools in Asia revealed by SSR. Theor Appl Genet 106:445–453

    CAS  PubMed  Google Scholar 

  • Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183–187

    Google Scholar 

  • Akazawa T, Egashira H (2005) Dadachamame (in Japanese). J Jpn Soc Edamame Sci 3:2–10

    Google Scholar 

  • Anai T (2012) Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breed Sci 61:462–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anai T, Yamada T, Hideshima R, Kinoshita T, Rahman SM, Takagi Y (2008) Two high-oleic-acid soybean mutants, M23 and KK21, have disrupted microsomal omega-6 fatty acid desaturase, encoded by GmFAD2-1a. Breed Sci 58:447–452

    CAS  Google Scholar 

  • Arikit S, Yoshihashi T, Wapchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A (2011a) Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnol J 9:75–87

    CAS  PubMed  Google Scholar 

  • Arikit S, Yoshihashi T, Wanchana S, Tanya P, Juwarttanasomran R, Srinives P, Vanavichit A (2011b) A PCR-based marker for a locus conferring aroma in vegetable soybean (Glycine max L.). Theor Appl Genet 122:311–316

    PubMed  Google Scholar 

  • Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J et al (2015) A population structure and genome-wide association analysis on the USDA soybean germplasm collection. The Plant Genome 8. https://doi.org/10.3835/plantgenome2015.04.0024

    Article  Google Scholar 

  • Benitez ER, Hajika M, Yamada T, Takahashi K, Oki N, Yamada N et al (2010) A major QTL controlling seed cadmium accumulation in soybean. Crop Sci 50:1728–1734

    CAS  Google Scholar 

  • Cao D, Takeshima R, Zhao C, Liu B, Abe J, Kong F (2017) Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot 68:1873–1884

    CAS  PubMed  Google Scholar 

  • Chinchest A, Nakeeraks P (1990) Mutation breeding of blackgram (Vigna mungo). Mungbean Meet 90:43–46

    Google Scholar 

  • Cooper JK, Till BJ, Laport RG, Darlow MG, Kleffner JM, Jamai A et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol. https://doi.org/10.1186/1471-2229-8-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelious B, Chen P, Chen Y, de Leon N, Shannon JG, Wang D (2005) Identification water-logging tolerance in soybean. Mol Breed 16:103–112

    Google Scholar 

  • Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chittooligosaccharidic Nod factors in legumes. Trends Plant Sci 6:24–30

    CAS  PubMed  Google Scholar 

  • Davies CS, Nielsen NC (1986) Genetic analysis of a null-allele for lipoxygenase-2 in soybean. Crop Sci 26:460–462

    Google Scholar 

  • Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rodas FR et al (2016) Quantitative trait locus mapping of soybean maturity gene E5. Breed Sci 66:407–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dwiyanti MS, Ujiie A, Thuy LTB, Yamada T, Kitamura K (2007) Genetic analysis of high α-tocopherol content in soybean seeds. Breed Sci 57:23–28

    CAS  Google Scholar 

  • Dwiyanti MS, Yamada T, Sato M, Abe J, Kitamura K (2011) Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC Plant Biol 11:152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque OM, Miwa H, Yasuda M, Fuji Y, Kaneko T, Sato S, Okazaki S (2015) Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl Environ Microbiol 81:6710–6717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco PB, Akao S (1993) Autoregulation and nitrate inhibition of nodule formation in soybean cv. Enrei and its nodulation mutants. J Exp Bot 44:547–553

    CAS  Google Scholar 

  • Fukui J, Arai M (1951) Ecological studies on Japanese soy-bean varieties. l. Classification of soy-bean varieties on the basis of the days from germination to blooming and from blooming to ripening with special reference to their geographic differentiation. Jpn J Breed 1:27–39

    Google Scholar 

  • Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861

    CAS  PubMed  Google Scholar 

  • Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M et al (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci USA 111:17797–17802

    CAS  PubMed  Google Scholar 

  • Fushimi T, Masuda R (2001) 2-Acetyl-1-pyrroline concentration of the aromatic vegetable soybean “Dadacha-Mame”. In: Proceeding of second international vegetable soybean conference, Washington State University, Tacoma, Washington, 39

  • Hajika M, Igita K, Kitamura K (1991) A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Jpn J Breed 41:507–509

    Google Scholar 

  • Hajika M, Takahashi M, Igita M (1996) A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja Sieb. et Zucc). Breed Sci 46:385–386

    CAS  Google Scholar 

  • Hajika M, Takahashi M, Sakai S, Matsunaga R (1998) Dominant inheritance of a trait lacking β-conglycinin detected in a wild soybean line. Breed Sci 48:383–386

    CAS  Google Scholar 

  • Hajika M, Takahashi M, Igita K, Sakai S, Nakazawa Y (2002) A new soybean variety “Ichihime”. Bull Natl Agric Res Cent Kyushu Okinawa Reg 40:79–94

    Google Scholar 

  • Hajika M, Funatsuki H, Yamada T, Takahashi K, Hishinuma A, Hirata K et al (2016) Development of a new pod dehiscence-resistant soybean cultivar ‘Sachiyutaka A1 gou’. Bull NARO Inst Crop Sci 16:1–34

    Google Scholar 

  • Han VP, Teng WL, Wang Y, Zhao X, Wu L, Li DM (2015) Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breed 134:300–309

    CAS  Google Scholar 

  • Harada K, Xia Z (2004) Soybean genomics: efforts to reveal the complex genome. Breed Sci 54:215–224

    CAS  Google Scholar 

  • Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N, Anai T (2011) Positional cloning of the responsible genes for maturity loci E1, E2, and E3 in soybean. In: D. Krezhova (ed.) “Soybean-genetics and novel techniques for yield enhancement”. IntechOpen, Croatia, pp 51–76

  • Hayashi M, Saeki Y, Haga M, Harada K, Kouchi H, Umehara Y (2012) Rj (rj) genes involved in nitrogen-fixing root nodule formation in soybean. Breed Sci 61:544–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T et al (2014) A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. Plant Cell Physiol 55:1679–1689

    CAS  PubMed  Google Scholar 

  • Hildebrand DF, Hymowitz T (1981) Two soybean genotypes lacking lipoxygenase-1. J Am Oil Chem Soc 58:583–586

    CAS  Google Scholar 

  • Hirata K, Masuda R, Tsubokura Y, Yasui T, Yamada T, Takahashi K et al (2014) Identification of quantitative trait loci associated with boiled seed hardness in soybean. Breed Sci 64:362–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota T, Yoshida S, Sawada T, Nakamura Y (2018) Starch properties affecting maltose production ability in vegetative black soybean seeds (edamame) with different maturation period. Hort J 87:236–249

    CAS  Google Scholar 

  • Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A et al (2007) Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res 14:271–281

    CAS  PubMed  Google Scholar 

  • Hong JS, Masuda C, Nakano M, Abe J, Ueda I (2003) Adaptation of cucumber mosaic virus soybean strains (SSVs) to cultivated and wild soybeans. Theor Appl Genet 107:49–53

    CAS  PubMed  Google Scholar 

  • Hoshino T, Takagi Y, Anai T (2010) Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a mutant alleles. Breed Sci 60:419–425

    CAS  Google Scholar 

  • Hoshino T, Watanabe S, Takagi Y, Anai T (2014) A novel GmFAD3-2a mutant allele developed through TILLING reduces α-linolenic acid content in soybean seed oil. Breed Sci 64:371–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang T-Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H et al (2009) High-density integrated linkage map based on SSR markers in soybean. DNA Res 16:213–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421

    Google Scholar 

  • Hymowitz T, Kaizuma K (1981) Soybean seed protein electrophoresis profiles from 15 Asian countries or regions: hypotheses on paths of dissemination of soybeans from China. Econ Bot 35:10–23

    CAS  Google Scholar 

  • Hyten D, Choi I-Y, Song Q, Specht JE, Carter TE, Shoemaker RC et al (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    CAS  Google Scholar 

  • Imai S (2014) Effect of green soybean extracts on allergy and inflammation. Nippon Shokuhin Kagaku Kogaku Kaishi 61:625–631

    Google Scholar 

  • Ishikawa G, Takada Y, Nakamura T (2006) A PCR-based method to test for the presence or absence of β-conglycinin α’ - and α-subunits in soybean seeds. Mol Breed 17:365–374

    CAS  Google Scholar 

  • Jang SJ, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H et al (2015) A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed coat permeability in soybean. PLoS ONE 10:e0128527

    PubMed  PubMed Central  Google Scholar 

  • Jegadeesan S, Yu K, Poysa V, Gawalko E, Morrison MJ, Shi C et al (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Genet 121:283–294

    CAS  PubMed  Google Scholar 

  • Jeong N, Suh SJ, Kim MH, Lee S, Moon JK, Kim HS et al (2012) Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24:4807–4818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S et al (2014) Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE 9:e106042

    PubMed  PubMed Central  Google Scholar 

  • Jiang CJ, Sugano S, Kaga A, Lee SS, Sugimoto T, Takahashi M et al (2017) Evaluation of resistance to Phytophthora sojae in soybean mini core collections using an improved assay system. Phytopathology 107:216–223

    CAS  PubMed  Google Scholar 

  • Kaga A, Shimizu T, Watanabe S, Tsubokura Y, Katayose Y, Harada K et al (2012) Evaluation of soybean germplasm conserved in NIAS Genebank and development of mini core collections. Breed Sci 61:566–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamaru K, Wang S, Abe J, Yamada T, Kitamura K (2006) Identification and characterization of wild soybean (Glycine soja Sieb. et Zucc.) strains with high lutein content. Breed Sci 56:231–234

    Google Scholar 

  • Kasai A, Kasai K, Yumoto S, Senda M (2007) Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: implication for inducing endogenous RNA silencing of chalcone synthase genes. Plant Mol Biol 64:467–479

    CAS  PubMed  Google Scholar 

  • Kasai A, Ohnishi S, Yamazaki H, Funatsuki H, Kurauchi T, Matsumoto T et al (2009) Molecular mechanism of seed coat discoloration induced by low temperature in yellow soybean. Plant Cell Physiol 50:1090–1098

    CAS  PubMed  Google Scholar 

  • Kasuga T, Salimath SS, Shi J, Gijzen M, Buzzell RI, Bhattacharyya MK (1997) High resolution genetic and physical mapping of molecular markers inked to the Phytophthora resistance gene Rps1-k in soybean. Mol Plant Microbe Interact 10:1035–1044

    CAS  Google Scholar 

  • Kato S, Yumoto S, Takada Y, Kono Y, Shimada S, Sakai T et al (2007) A new soybean cultivar “Kinusayaka” lacking lipoxygenase isozymes and group A acetyl saponin. Bull Natl Agric Res Cent Tohoku Reg 107:29–42

    Google Scholar 

  • Kato S, Fujii K, Yumoto S, Ishimoto M, Shiraiwa T, Sayama T et al (2015) Seed yield and its components of indeterminate and determinate lines in recombinant inbred lines of soybean. Breed Sci 65:154–160

    PubMed  PubMed Central  Google Scholar 

  • Kato S, Takada Y, Shimamura S, Hirata K, Sayama T, Taguchi-Shiobara F et al (2016) Transfer of the Rsv3 locus from ‘Harosoy’ for resistance to soybean mosaic virus strains C and D in Japan. Breed Sci 66:319–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Sayama T, Takada Y, Yumoto S, Ishimoto M, Shimamura S et al (2017) Breeding of soybean lines conferred multiple disease and pest resistance by marker-assisted selection with a high-resolution PCR fragment analysis system. (2017) Bulletin NARO. Agric Res Cent Toholu Reg 119:89–106

    Google Scholar 

  • Kikuchi A, Tsukamoto C, Tabuchi K, Adachi T, Okubo K (1999) Inheritance and characterization of a null allele for group A acetyl saponins found in a mutant soybean (Glycine max (L.) Merrill). Breed Sci 49:167–171

    CAS  Google Scholar 

  • Kim DH, Kim KH, Van K, KIM MY, Lee SH (2010) Fine mapping of a resistance gene to bacterial leaf pustule in soybean. Theor Appl Genet 120:1443–1450

    CAS  PubMed  Google Scholar 

  • Kitamura K, Kaizuma N (1981) Mutant strains with low levels of subunits of 7S globulin in soybean (Glycine max Merr.) seed. Jpn J Breed 31:353–359

    CAS  Google Scholar 

  • Kitamura K, Davies CS, Kaizuma N, Nielsen NC (1983) Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci 23:924–927

    CAS  Google Scholar 

  • Kitamura K, Kumagai T, Kikuchi A (1985) Inheritance of lipoxygenase-2 and genetic relationship among genes for lipoxygenase-1, -2 and -3 isozymes in soybean seeds. Jpn J Breed 35:413–420

    CAS  Google Scholar 

  • Kitamura K, Ishimoto M, Kaizuma N (1993) Genetic relationships among genes for the subunits of soybean 11S globulin. Japan J Breed 43(Suppl. 2):159

    Google Scholar 

  • Kohzuma K, Sato Y, Ito H, Okuzaki A, Watanabe M, Kobayashi H et al (2017) The non-mendelian green gene in soybean encodes a small subunit of photosystem II. Plant Physiol 173:2138–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R (2004) Antibiotic effect of insect-resistance soybean on common cutworm (Spodoptera litura) and its inheritance. Breed Sci 54:27–32

    Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y (2005) QTL mapping of antibiosis resistance to common cutworm (Spodoptera litura Fabricius) in soybean. Crop Sci 45:2044–2048

    CAS  Google Scholar 

  • Komatsu K, Hwang TY, Takahashi M, Sayama T, Funatsuki H, Oki N, Ishimoto M (2012) Identification of QTL controlling post-flowering period in soybean. Breed Sci 61:646–652

    PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Nanjo Y, Nishimura M (2013) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteomics 79:231–250

    CAS  PubMed  Google Scholar 

  • Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S et al (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurasch A, Hahn V, Leiser W, Vollman J, Schori A, Betrix C-A et al (2017) Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. Plant Cell Environ. https://doi.org/10.1111/pce.12896

    Article  PubMed  Google Scholar 

  • Kurosaki H, Yumoto S, Matsukawa I (2004) Correlation of cold-weather tolerance with pubescence color and flowering time in yellow hilum soybeans in Hokkaido. Breed Sci 54:303–311

    Google Scholar 

  • Kurosaki H, Fujita S, Ohnishi S, Kosaka F, Tanaka Y, Takeuchi T et al (2017) A new soybean variety “Suzumaru R”. Bull Hokkaido Res Org Agric Exp Stn 101:1–13

    Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    CAS  PubMed  Google Scholar 

  • Lee GH, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6:e26720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Freewalt KR, McHale LK, Song Q, Jun TH, Michel Michel AP et al (2015) A high-resolution linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6 K. Mol Breed. https://doi.org/10.1007/s11032-015-0209-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenis JM, Gillman JD, Lee JD, Shannon JG, Bilyeu KD (2010) Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120:1139–1149

    CAS  PubMed  Google Scholar 

  • Liu B, Fujita T, Yan Z, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z et al (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yan Y, Fujita Y, Xu D (2018) Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci 68:442–448

    PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Sirison J, Ishi T, Matsumiya K (2017) Soybean lipophilic proteins-Origin and functional properties as affected by interaction with storage proteins. Curr Opin Colloid Interface Sci 28:120–128

    CAS  Google Scholar 

  • Miyazaki S, Carter TE, Shiina T, Chibana T, Miyashita S, Kunihiro Y (1995) Identification of representative accessions of old cultivars that contribute to the pedigree of modern Japanese soybean varieties, based on passport data analysis. Misc Publ Natl Ins Agrobiol Resour 8:18–37

    Google Scholar 

  • Morisaki A, Yamada N, Yamanaka S, Matsui K (2014) Dimethyl sulfide as a source of the seaweed-like aroma in cooked soybeans and correlation with its precursor, S-Metylmethionine (vitamin U). J Agric Food Chem 62:8289–8294

    CAS  PubMed  Google Scholar 

  • Moriwaki J (2010) Aiming of the construction of the race distinction system of Phytophthora sojae. Plant Prot 64:508–510

    Google Scholar 

  • Naito K, Takahashi Y, Chaitieng B, Hirano K, Kaga A, Takagi K et al (2017) Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo). Breed Sci 67:151–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H et al (2014) A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. Plant Cell Physiol 55:1763–1771

    CAS  PubMed  Google Scholar 

  • Nakayama S (2015) Domestication of the soybean (Glycine max) and morphological differentiation of seeds in the Jomon period. Jpn J Histor Bot 23:33–42

    Google Scholar 

  • Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Rouf Mian MA et al (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    CAS  Google Scholar 

  • Nguyen LV, Takahashi R, Githiri SM, Rodriguez TO, Tsutsumi N, Kajihara S et al (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr). Theor Appl Genet 130:743–755

    CAS  PubMed  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y et al (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    CAS  PubMed  Google Scholar 

  • Odanaka H, Kaizuma N (1989) Mutants on soybean storage proteins induced with γ-ray irradiation. Jpn J Breed 39(Suppl. 1):430–431

    Google Scholar 

  • Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T et al (2011) Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theor Appl Genet 122:633–642

    PubMed  Google Scholar 

  • Ohnishi S, Miyake N, Takeuchi T, Kousaka F, Hiura S, Kanehira O et al (2012) Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid. Breed Sci 61:618–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki S, Zehner S, Hempel J, Lang K, Gottfert M (2009) Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295:88–95

    CAS  PubMed  Google Scholar 

  • Oki N, Komatsu K, Sayama T, Ishimoto M, Takahashi M, Takahashi M (2012) Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Breed Sci 61:608–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oki N, Kaga A, Shimizu T, Takahashi M, Kono Y, Takahashi M (2017) QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja). PLoS ONE 12:e0189440

    PubMed  PubMed Central  Google Scholar 

  • Onda R, Watanabe S, Sayama T, Komatsu K, Okano K, Ishimoto M, Harada K (2011) Genetic and molecular analysis of fasciation mutation in Japanese soybeans. Breed Sci 61:26–34

    Google Scholar 

  • Primomo VS, Poysa V, Ablett GR, Jackson C-J, Gijzen M, Rajcan I (2005) Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci 45:2454–2464

    CAS  Google Scholar 

  • Sakai T, Takada Y, Kono Y, Shimada S (2002) Characteristics of a new soybean variety “Fukuibuki”. Tohoku Agric Res 55:65–66

    Google Scholar 

  • Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A et al (2017) Mapping and identification of a potential candidate for a novel maturity locus, E10, in soybean. Theor Appl Genet 130:377–390

    CAS  PubMed  Google Scholar 

  • Samoto M, Maebuchi M, Miyazaki C, Kugitani H, Kohno M, Hirotsuka M, Kito M (2007) Abundant proteins associated with lecithin in soy protein isolate. Food Chem 102:317–322

    CAS  Google Scholar 

  • Saruta M, Takada Y, Kikuchi A, Yamada T, Komatsu K, Sayama T et al (2012) Screening and genetic analysis of resistance to peanut stunt virus in soybean: identification of the putative Rpsv1 resistance gene. Breed Sci 61:625–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N et al (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521

    CAS  PubMed  Google Scholar 

  • Sayama T, Hwang TY, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M et al (2010) Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci 60:380–389

    Google Scholar 

  • Sayama T, Ono E, Takagi K, Takada Y, Horikawa M, Nakamoto Y et al (2012) The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean. Plant Cell 24:2123–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A et al (2017) Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed Sci 67:363–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T et al (2004) Patterning of virus infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16:807–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K (2008) Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci 58:361–366

    CAS  Google Scholar 

  • Shim S, Ha J, Kim MY, Choi MS, Kang S-T, Jeong S-C et al (2019) GmBRC1 is a candidate gene for branching in soybean (Glycine max (L.) Merrill). Int J Mol Sci. https://doi.org/10.3390/ijms20010135

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimamoto Y (2001) Polymorphism and phylogeny of soybean based on chloroplast and mitochondrial DNA analysis. JARQ 35:79–84

    CAS  Google Scholar 

  • Shimomura M, Kanamori H, Komatsu S, Namiki N, Mukai Y, Kurita K et al (2015) The Glycine max cv. Enrei genome for improvement of Japanese soybean cultivars. Int J Genom 2015:358127

    Google Scholar 

  • Shiraiwa M, Yamauchi Harada K, Okubo K (1990) Inheritance of “Group A saponin” in soybean seed. Agric Biol Chem 54:1347–1352

    CAS  Google Scholar 

  • Song Q, Jenkins J, Jia G, Hyten D, Pantalone V, Jackson SA et al (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics. https://doi.org/10.1186/s12864-015-2344-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Suematsu K, Abiko T, Nguyen VL, Mochizuki T (2017) Phenotypic variation in root development of 162 soybean accessions under hypoxia condition at the seedling stage. Plant Prod Sci 20:323–335

    Google Scholar 

  • Sugimoto T, Yoshida S, Watanabe K, Aino M, Kanto T, Maekawa K, Irie K (2008) Identification of SSR markers linked to the Phytophthora resistance gene Rps1-d in soybean. Plant Breed 127:154–159

    CAS  Google Scholar 

  • Sugimoto T, Yoshida S, Kaga A, Hajika M, Watanabe K, Aino M et al (2011a) Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 182:133–145

    CAS  Google Scholar 

  • Sugimoto T, Yoshida S, Aino M, Yamamoto R, Kuroda T, Maeda M, Irie K (2011b) Evaluation of several soybeans for field resistance to Phytophthora sojae and selection of parental soybeans for breeding new resistant cultivars. Jpn J Phytopathol 71:157

    Google Scholar 

  • Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y et al (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet 47:939–943

    CAS  PubMed  Google Scholar 

  • Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H (2010) Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Mol Breed 25:407–418

    CAS  Google Scholar 

  • Suzuki C, Tanaka Y, Takeuchi T, Yumoto S, Shirai S (2012) Genetic relationships of soybean cyst nematode resistance originated in Gedenshirazu and PI84751 on Rhg1 and Rhg4 loci. Breed Sci 61:602–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki C, Miyoshi T, Shirai S, Yumoto S, Tanaka Y, Hagiwara S et al (2017) A new variety “Yukihomare R” introduced resistance for soybean cyst nematode race1 into “Yukihomare” by marker assisted selection. Bull Hokkaido Res Org Agric Exp Stns 101:33–47

    Google Scholar 

  • Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53:133–140

    CAS  Google Scholar 

  • Takada Y, Sayama T, Kikuchi A, Kato S, Tatsuzaki N, Nakamoto Y et al (2010) Genetic analysis of variation in sugar chain composition at the C-22 position of group A saponin in soybean, Glycine max (L.) Merrill. Breed Sci 60:3–8

    CAS  Google Scholar 

  • Takada Y, Sasama H, Sayama T, Kikuchi A, Kato S, Ishimoto M, Tsukamoto C (2013) Genetic and chemical analysis of a key biosynthetic step for soyasapogenol A, an aglycone of group A saponins that influence soymilk flavor. Theor Appl Genet 126:721–731

    CAS  PubMed  Google Scholar 

  • Takagi Y, Rahman SM, Anai T (2000) Construction of novel fatty acid composition in soybean oil by induced mutation. Gamma F Symp 37:17–28

    Google Scholar 

  • Takagi K, Kaga A, Ishimoto M, Hajika M, Matsunaga T (2015) Diversity of seed cesium accumulation in soybean mini-core collections. Breed Sci 65:372–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Banba H, Kikuchi A, Ito M, Nakamura S (1994) An induced mutant line lacking the α-subunit of β-conglycinin in soybean [Glycine max (L.) Merrill]. Breed Sci 44:65–66

    CAS  Google Scholar 

  • Takahashi K, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R et al (2003) Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217:577–586

    CAS  PubMed  Google Scholar 

  • Takahashi K, Shimada S, Shimada H, Takada Y, Sakai T, Kono Y et al (2004) A new soybean cultivar “Yumeminori” with low allergenicity and high content of 11S globulin. Bull Natl Agric Res Cent Tohoku Reg 102:23–39

    Google Scholar 

  • Takahashi R, Benitez ER, Funatsuki H, Ohnishi S (2005) Soybean maturity and pubescence color genes improve chilling tolerance at high latitude regions. Crop Sci 45:1387–1393

    CAS  Google Scholar 

  • Takahashi M, Takahashi M, Oki N, Komatsu K, Nakazawa Y, Matsunaga R et al (2013) New soybean cultivar “Suzukaren”. Bull NARO Kyushu Okinawa Agric Res Cent 59:1–22

    Google Scholar 

  • Takahashi M, Oki N, Takahashi M, Komatsu K, Nakazawa Y, Matsunaga R (2017) Breeding of new cultivar “Fukuminori” with resistance to common cutworm (Spodoptera litura Fabricius). Bull NARO Kyushu Okinawa Agric Res Cent 66:21–45

    Google Scholar 

  • Takeshima R, Hayashi T, Zhu J, Zhao C, Xu M, Yamaguchi N (2016) A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a FLOWERING LOCUS T ortholog. J Exp Bot 67:5247–5258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeya M, Yamasaki F, Hattori S, Kaga A, Tomooka N (2013) Systems for making NIAS core collections, single-seed-derived germplasm, and plant photo images available to the research community. Genet Resour Crop Evol 60:1945–1951

    CAS  Google Scholar 

  • Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32

    CAS  PubMed  Google Scholar 

  • Tavva VS, Kim Y-H, Kagan IA, Dinkins RD, Kim K-H, Collins GB (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26:61–70

    CAS  PubMed  Google Scholar 

  • Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563–8568

    CAS  PubMed  Google Scholar 

  • Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3’-hdroxylase gene is associated with gray pubescence color. Plant Mol Biol 50:187–196

    CAS  PubMed  Google Scholar 

  • Toda K, Hirata K, Masuda R, Yasui T, Yamada T, Takahashi K et al (2015) Relationship between mutations of the pectin methylesterase gene in soybean and the hardness of cooked beans. J Agric Food Chem 63:8870–8878

    CAS  PubMed  Google Scholar 

  • Tsubokura Y, Hajika M, Harada K (2006a) Molecular characterization of a β-conglycinin deficient soybean. Euphytica 150:249–255

    CAS  Google Scholar 

  • Tsubokura Y, Hajika M, Harada K (2006b) Molecular markers associated with β-conglycinin deficiency in soybean. Breed Sci 56:113–117

    CAS  Google Scholar 

  • Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A et al (2012) The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α- subunit genes. Plant Mol Biol 78:301–309

    CAS  PubMed  Google Scholar 

  • Tsubokura Y, Matsumura H, Xu M, Liu B, Nakashima H, Anai T et al (2013) Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3:117–134

    CAS  Google Scholar 

  • Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A et al (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113:429–441

    CAS  PubMed  Google Scholar 

  • Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K et al (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom 16:1014

    Google Scholar 

  • Tsukamoto C, Kikuchi A, Kudou S, Harada K, Kitamura K, Okubo K (1992) Group A acetyl saponin-deficient mutant from the wild soybean. Phytochemistry 31:4139–4142

    CAS  Google Scholar 

  • Tsukamoto C, Kikuchi A, Harada K, Kitamura K, Okubo K (1993) Genetic and chemical polymorphism of saponins in soybean seed. Phytochemistry 34:1351–1356

    CAS  PubMed  Google Scholar 

  • Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236

    CAS  PubMed  Google Scholar 

  • Tuyen DD, Chen H, Vu HTT, Hamwieh A, Yamada T, Sato T et al (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147

    Google Scholar 

  • Uchibori A, Sasaki J, Takeuchi T, Kamiya M, Tazawa A, Inukai T, Masuta C (2009) QTL analysis for resistance to Soybean dwarf virus in Indonesian soybean cultivar Wilis. Mol Breed 23:323–328

    CAS  Google Scholar 

  • Ujiie A, Yamada T, Fujimoto K, Endo Y, Kitamura K (2005) Identification of soybean varieties with high α-tocopherol content. Breed Sci 55:123–125

    CAS  Google Scholar 

  • Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishikawa A et al (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length cDNA library. DNA Res 15:333–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L et al (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep 6:23598

    CAS  PubMed  PubMed Central  Google Scholar 

  • VanToai TT, Beuerlein AF, Schmitthenner SK, St Martin SK (1994) Genetic variability for flooding tolerance in soybean. Crop Sci 34:1112–1115

    Google Scholar 

  • Vollmann J, Losak T, Pachner M, Watanabe D, Musilova L, Hlusek J (2015) Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica 203:177–184

    CAS  Google Scholar 

  • Wang WH, Takano T, Shibata D, Kitamura K, Takeda G (1994) Molecular basis of a null mutation in soybean lipoxygenase 2: substitution of glutamine for an iron-ligand histidine. Proc Natl Acad Sci USA 91:5828–5832

    CAS  PubMed  Google Scholar 

  • Wang WH, Kato T, Takano T, Shibata D, Kitamura K, Takeda G (1995) Two single-base substitutions involved in altering in a paired box of AAATAC in the promoter region of soybean lipoxygenase L-3 gene impair the promoter function in tobacco cells. Plant Sci 109:67–73

    CAS  Google Scholar 

  • Wang S, Kanamaru K, Li W, Abe J, Yamada T, Kitamura K (2007) Simultaneous accumulation of high content of α-tocopherol and lutein is possible in seeds of soybean (Glycine max (L.) Merr.). Breed Sci 57:297–304

    CAS  Google Scholar 

  • Wang W, He Q, Yang H, Xiang S, Zhao T, Gai J (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. & Zucc.) as donor parent. Euphytica 189:293–307

    Google Scholar 

  • Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 54:399–407

    CAS  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y et al (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N et al (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiodic responses of flowering in soybean. Breed Sci 61:531–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Tsukamoto C, Oshita T, Yamada T, Anai T, Kaga A (2017) Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breed Sci 67:277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Shimizu T, Machita K, Tsubokura Y, Xia X, Yamada T et al (2018) Development of a high-density linkage map and chromosome segment substitution lines for Japanese soybean cultivar Enrei. DNA Res 25:123–136

    CAS  PubMed  Google Scholar 

  • Wolfgang G, An Y (2017) Genetic separation of southern and northern soybean breeding programs in North America and their associated allelic variation at four maturity loci. Mol Breed. https://doi.org/10.1007/s11032-016-0611-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Sato H, Watanabe S, Kawasaki S, Harada K (2005) Construction and characterization of a BAC library of soybean. Euphytica 141:129–137

    CAS  Google Scholar 

  • Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K et al (2007) An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14:257–269

    CAS  PubMed  Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164

    CAS  PubMed  Google Scholar 

  • Xin DW, Qi ZM, Jian HW, Hu ZB, Zhu RS, Hu JH et al (2016) QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE 11:e0149380

    PubMed  PubMed Central  Google Scholar 

  • Xu DH, Abe J, Gai AJ, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    CAS  PubMed  Google Scholar 

  • Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S et al (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Yamaguchi N, Zhao C, Takeshima R, Kasai M, Watanabe S et al (2015) The soybean-specific maturity gene E1 family of floral repressor controls night-break responses through down-regulation of FLOWEING LOCUS T orthologs. Plant Physiol 168:1735–1746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yagasaki K, Kaizuma N, Kitamura K (1996) Inheritance of glycinin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glycine max (L.) Merr.). Breed Sci 46:11–15

    CAS  Google Scholar 

  • Yagasaki K, Sakamoto H, Seki K, Yamada N, Takamatsu M, Taniguchi T, Takahashi K (2010) Breeding of a new soybean cultivar “Nanahomare” (in Japanese). Hokuriku Crop Sci 45:61–64

    Google Scholar 

  • Yamada T, Hajika M, Yamada N, Hirata K, Okabe A, Oki N et al (2012) Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei. Breed Sci 61:653–660

    PubMed  PubMed Central  Google Scholar 

  • Yamada T, Shimada S, Hajika M, Hirata K, Takahashi K, Nagaya T et al (2014) Major QTLs associated with green stem disorder insensitivity of soybean (Glycine max (L.) Merr.). Breed Sci 64:331–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Hajika M, Funatsuki H, Takahashi K, Hirata K, Hishinuma A, Tanaka J (2017) Causal analysis of yield-increase by introgression of shattering resistance gene pdh1 in soybean. Jpn J Crop Sci 86:251–257

    Google Scholar 

  • Yamaguchi N, Sayama T, Sasama H, Yamazaki H, Miyoshi T, Tanaka Y, Ishimoto M (2014a) Mapping of quantitative trait loci associated with terminal raceme length in soybean. Crop Sci 54:2461–2468

    Google Scholar 

  • Yamaguchi N, Sayama T, Yamazaki H, Miyoshi T, Ishimoto M, Funatsuki H (2014b) Quantitative trait loci associated with lodging tolerance in soybean cultivar ‘Toyoharuka’. Breed Sci 64:300–308

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Yamazaki H, Ohnishi S, Suzuki C, Hagihara S, Miyoshi T, Senda M (2014c) Methods for selection of soybeans tolerant to seed cracking under chilling temperatures. Breed Sci 64:103–108

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Kurosaki H, Ishimoto M, Kawasaki M, Senda M, Miyoshi T (2015) Early-maturing and chilling-tolerant soybean lines derived from crosses between Japanese and Polish cultivars. Plant Prod Sci 18:234–239

    Google Scholar 

  • Yamaguchi N, Ohnishi S, Miyoshi T (2018) Screening for chilling-tolerant soybeans at the flowering stage using a seed yield- and maturity-based evaluation method. Crop Sci 58:312–320

    CAS  Google Scholar 

  • Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y et al (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8:61–72

    CAS  PubMed  Google Scholar 

  • Yamanaka N, Morishita M, Mori T, Lemos NG, Hossain MdM, Akamatsu H et al (2015) Multiple Rpp-gene pyramiding confers resistance to Asian soybean rust isolates that are virulent on each of the pyramided genes. Trop Plant Pathol 40:283–290

    Google Scholar 

  • Yamashita Y, Tazawa A, Minami M (2012) Development of a method to evaluate the field resistance of soybean to Phytophthora sojae. Jpn J Crop Sci 81:183–189

    Google Scholar 

  • Yamashita Y, Takeuchi T, Ohnishi S, Sasaki J, Tazawa A (2013) Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar ‘Wilis’. Breed Sci 63:417–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan T, Di S, Rodas FR, Torrico TR, Murai Y, Iwashita T et al (2014) Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC Plant Biol 14:58

    PubMed  PubMed Central  Google Scholar 

  • Yano R, Takagi K, Takada Y, Mukaiyama K, Tsukamoto C, Sayama T et al (2017) Metabolic switching of astringent and beneficial triterpenoid saponins in soybean is achieved by a loss-of-function mutation in cytochrome P450 72A69. Plant J 89:527–539

    CAS  PubMed  Google Scholar 

  • Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M et al (2010) Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci 60:243–254

    CAS  Google Scholar 

  • Yu N, Lee TG, Rosa DP, Hudson M, Diers BW (2016) Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean. Theor Appl Genet 129:2403–2412

    CAS  PubMed  Google Scholar 

  • Zhai H, Lu S, Wang Y, Chen X, Ren H, Yang J et al (2014) Allelic variation at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS ONE 9:e97636

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chen P, Florez-Palacios SL, Shi A, Hou A, Ishibashi T (2010) Seed quality attributes of food-grade soybeans from U.S. and Asia. Euphytica 173:387–396

    Google Scholar 

  • Zhao C, Takashima R, Zhu J, Xu M, Sato M, Watanabe S et al (2016) A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16:20

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Masatsugu Hashiguchi, Dr. Satoshi Watanabe, and Dr. Fukuhiro Yamasaki for their kind assistance in preparing the statistics for the genetic resources in the National BioResource Project, the figure for the flowering network, the statistics of the NARO Genebank, and the picture for the soybean mini-core collection, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akito Kaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, K., Kaga, A. Recent genetic research on Japanese soybeans in response to the escalation of food use worldwide. Euphytica 215, 70 (2019). https://doi.org/10.1007/s10681-019-2396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2396-3

Keywords

Navigation