Skip to main content
Log in

Putative regulatory candidate genes for QTL linked to fruit traits in oil palm (Elaeis guineensis Jacq.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Palm oil is among the most important vegetable oils, contributing to a quarter of the world’s oils and fats market. The oil palm (Elaeis guineensis Jacq.) fruitlets, which are the source of palm oil, vary from 8 to 20 g in weight. Palm oil content in the fruitlets is approximately 45–50% by weight and an increase in the percentage of mesocarp-to-fruit is likely to have a positive effect on oil yield. In this study, we report a quantitative trait loci (QTL) associated with two yield related components, namely fruit and mesocarp content in a commercial breeding population (Deli dura × Yangambi pisifera). The QTL confidence interval of about 12 cM (~ 6.7 Mbp) was fine-mapped with 31 markers (17 SNPs and 14 SSRs) consisting of 20 nuclear markers derived from the maternal parent, six paternal and five co-segregating markers. Interestingly, inheritance of the paternal alleles leads to a larger difference in both fruit and mesocarp weight, when comparing genotypes in the progeny palms. Candidate genes and transcription factors were mined from the QTL region by positioning markers on the oil palm EG5 genome build. Putative genes and transcription factors involved in various biological processes including flower organ development, flowering, photosynthesis, microtubule formation, nitrogen and lipid metabolism were identified within this QTL interval on pseudo-chromosome 3. This genome-based approach allowed us to identify a number of potential candidate gene markers associated with oil palm fruit and mesocarp weight which can be further evaluated for potential use in marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLASTN:

Similarity search of the NCBI nucleotide database using a nucleotide query

BLASTX:

Similarity search of the NCBI protein database using a translated nucleotide query

CCT4 :

T-complex protein 1 subunit delta

CHR03:

Pseudo-chromosome 3

CHS :

Chalcone synthase

COP1 :

Constitutively photomorphogenic 1

cM:

Centimorgan map distance

DPF:

Dry mesocarp/fruit ratio

EG5:

E. guineensis 5th genome build as published as Singh et al. (2013)

FB:

Fruit/bunch ratio

FELDA:

Federal Land Development Authority Malaysia

FFB:

Fresh fruit bunch

GM:

G model

GS :

Glutamine synthetase nodule isozyme

IM:

Interval Mapping

KCS6 :

3-Ketoacyl-CoA synthase 6

KW:

Kruskal–Wallis test

Lhcb1 :

Chlorophyll a-b binding protein of LHCII type 1

LG:

Linkage group

LOD:

Logarithm of odds

LPP2 :

Lipid phosphate phosphatase 2

MAP70.1 :

Microtubule-associated protein 70-1

MAS:

Marker-assisted selection

Mbp:

Million base-pairs

MFW:

Mean fruit weight

MKW:

Mean kernel weight

MPW:

Mean mesocarp weight

MQM:

Multiple-QTL Model

MSW:

Mean shell weight

MTF:

Mesocarp/fruit ratio

MYB21 :

TF MYB21

nr:

NCBI non-redundant protein sequences database

nt:

NCBI nucleotide collection

NUC :

Zinc finger protein NUTCARACKER

ORP1C :

Oxysterol-binding protein-related protein 1C

OTDP:

Oil/dry mesocarp ratio

QTL:

Quantitative trait loci

refseq_protein:

NCBI reference proteins database

RFLP:

Restriction fragment length polymorphism

SF and STF:

Shell/fruit ratio

SLR1 :

DELLA protein SLR1

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeat

TF:

Transcription factor

TPS6 :

α,α-Trehalose-phosphate synthase [UDP-forming] 6

TUBB :

Tubulin beta chain

VAC14 :

Protein VAC14 homolog

WPF:

Wet mesocarp/fruit ratio

YC:

Yield components

References

  • Ajambang W, Ardie SW, Volkaert H, Ngando-Ebongue GF, Sudarsono S (2015) Comparative expression profiling of three early inflorescence stages of oil palm indicates that vegetative to reproductive phase transition of meristem is regulated by sugar balance. Funct Plant Biol 42(6):589–598

    Article  CAS  Google Scholar 

  • Ajambang W, Mondjeli C, Ntsefong GN, Sudarsono S (2016) RNA-Seq analysis reveals influence of sugar level and photoperiod on seasonality in oil palm (Elaeis guineensis Jacq.) sex-specific inflorescence emergence. J App Biol Biotechnol 4(02):016–022

    CAS  Google Scholar 

  • Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat C (2007) Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 52(3):405–419

    Article  CAS  Google Scholar 

  • Bernardo R (2013) Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theor Appl Genet 126:999–1009

    Article  CAS  Google Scholar 

  • Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah S-C, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120(8):1673–1687

    Article  CAS  Google Scholar 

  • Blaak G, Spaarnaaij LD, Menendez T (1963) Breeding for inheritance in the oil palm (Elaeis guineensis Jacq.). Part II methods of bunch quality analysis. J W Afr Inst Oil Palm Res 4:146

    Google Scholar 

  • Blume Y, Yemets A, Sheremet Y, Nyporko A, Sulimenko V, Sulimenko T, Dráber P (2010) Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells. BMC Plant Biol 10:29

    Article  Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci USA 108(30):12527–12532

    Article  CAS  Google Scholar 

  • Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146(1):97–107

    Article  CAS  Google Scholar 

  • Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5(3):e1000440

    Article  Google Scholar 

  • Chin CW, Suhaimi S (1996) FELDA oil palm planting materials. In: Rajanaidu N, Jalani BS (eds) Proceedings of seminar on sourcing of oil palm planting materials for local and overseas joint venture: 22–23 July 1996; Selangor. Palm Oil Research Institute of Malaysia, Bangi

  • Dai C, Xue H-W (2010) Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J 29(11):1916–1927

    Article  CAS  Google Scholar 

  • Dao TTH, Linthorst HJM, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10:397–412

    Article  CAS  Google Scholar 

  • Domínguez E, Heredia-Guerrero JA, Heredia A (2011) The biophysical design of plant cuticles: an overview. New Phytol 189:938–949

    Article  Google Scholar 

  • Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F (2013) Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol 162:1337–1358

    Article  CAS  Google Scholar 

  • Elahi N, Duncan RW, Stasolla C (2016) Molecular regulation of seed oil accumulation. J Adv Nutr Hum Metab 2:e1296

    Google Scholar 

  • Gascon JP, de Berchoux C (1963) Caractéristiques qualitatives du régime d’Elaeis guineensis Jacq. Quelques relations entre les Dura et Tenera d’une même descendance et leur application a l’amélioration des semences. Oleagineux 18:411–415

    Google Scholar 

  • Goddijn OJ, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4(8):315–319

    Article  CAS  Google Scholar 

  • Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MD, Beulé T, Severac D, Amblard P, Tregear J, Durand-Gasselin T, Morcillo F, Dussert S (2016) Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. Plant J 87(5):423–441

    Article  CAS  Google Scholar 

  • Hall MC, Basten CJ, Willis JH (2006) Pleiotropic quantitative trait loci contribute to population divergence in traits associated with life-history variation in Mimulus guttatus. Genetics 172(3):1829–1844

    Article  CAS  Google Scholar 

  • Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71(3):443–453

    CAS  PubMed  Google Scholar 

  • Isa ZA, Kushairi A, Mohd Din A, Suboh O, Junaidah J, Noh A, Choo KW, Musa B (2011) A critical re-examination of the method of bunch analysis in oil palm breeding—an update. In: Paper presented at ISOPB conference, Kuala Lumpur Convention Centre, Kuala Lumpur

  • Ithnin M, Xu Y, Marjuni M, Mohamed Serdari N, Mohd Din A, Low ETL, Tan Y-C, Yap S-J, Ooi LC-L, Rajanaidu N, Singh R, Xu S (2017) Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genomes 13:103

    Article  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14(1):57–70

    Article  CAS  Google Scholar 

  • Jackson D, Culianez-Macia F, Prescott AG, Roberts K, Martin C (1991) Expression patterns of myb genes from Antirrhinum flowers. Plant Cell 3(2):115–125

    Article  CAS  Google Scholar 

  • Jeennor S, Volkaert H (2014) Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 10:1–14

    Article  Google Scholar 

  • Jin JJ, Lee M, Bai B, Sun Y, Qu J, Rahmad S, Alfiko Y, Lim CH, Suwanto A, Sugiharti M, Wong L, Ye J, Chua N-H, Yue GH (2016) Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm. DNA Res 23(6):527–533

    Article  CAS  Google Scholar 

  • Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J 43(1):107–117

    Article  CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  Google Scholar 

  • Kushairi A, Singh R, Ong-Abdullah M (2017) The oil palm industry in Malaysia: thriving with transformative technologies. J Oil Palm Res 29:431–439

    Google Scholar 

  • Lee SB, Suh MC (2013) Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant 6(2):246–249

    Article  CAS  Google Scholar 

  • Liu Z, Yang X, Fu Y, Zhang Y, Yan J, Song T, Rocheford T, Li J (2009) Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol Biol Rep 36:813–821

    Article  CAS  Google Scholar 

  • Lokesh U, Kiranmai K, Pandurangaiah M, Sudhakarbabu O, Nareshkumar A, Sudhakar C (2013) Role of plant fatty acid elongase (3 keto acyl-CoA synthase) gene in cuticular wax biosynthesis. RRJAAS 2(4):35–42

    Google Scholar 

  • Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46(6):984–1008

    Article  CAS  Google Scholar 

  • Mandelkow E, Mandelkow E-M (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7:72–81

    Article  CAS  Google Scholar 

  • Moyano E, Martínez-Garcia JF, Martin C (1996) Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell 8(9):1519–1532

    Article  CAS  Google Scholar 

  • Ngo MH, Colbourne TR, Ridgway ND (2010) Functional implications of sterol transport by the oxysterol-binding protein gene family. Biochem J 429(1):13–24

    Article  CAS  Google Scholar 

  • Ooi TEK, Yeap WC, Leona DJD, Ng BZ, Lee FC, Ainul MO, Appleton DR, Chew FT, Kulaveerasingam H (2015) Differential abundance analysis of mesocarp protein from high- and low yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis. Proteome Sci 13:28

    Article  Google Scholar 

  • Paradis S, Villasuso AL, Aguayo SS, Maldiney R, Habricot Y, Zalejski C, Machado E, Sotta B, Miginiac E, Jeannette E (2011) Arabidopsis thaliana lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves. Plant Physiol Biochem 49(3):357–362

    Article  CAS  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62(2):453–467

    Article  CAS  Google Scholar 

  • Pathan MS, Sleper DA (2008) Advances in soybean breeding. In: Stacey G (ed) Genetics and genomics of soybean. Springer, New York

    Google Scholar 

  • Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281(14):9018–9029

    Article  CAS  Google Scholar 

  • Pesquet E, Korolev AV, Calder G, Lloyd CW (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol 20(8):744–749

    Article  CAS  Google Scholar 

  • Pierrugues O, Brutesco C, Oshiro J, Gouy M, Deveaux Y, Carman GM, Thuriaux P, Kazmaier M (2001) Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress. J Biol Chem 276(23):20300–20308

    Article  CAS  Google Scholar 

  • Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26(9):3646–3660

    Article  CAS  Google Scholar 

  • Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:70

    Article  CAS  Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295

    Article  CAS  Google Scholar 

  • Rajanaidu N, Kushari A, Rafii M, Mohd Din A, Ithnin M, Jalani BS (2000) Oil palm breeding and genetic resources. In: Basiron Y, Jalani BS, Chan KW (eds) Advances in oil palm research. Malaysian Palm Oil Board, Bangi

    Google Scholar 

  • Rance KA, Mayes S, Price Z, Jack PL, Corley RHV (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 103:1302–1310

    Article  CAS  Google Scholar 

  • Rao V, Soh AC, Corley RHV, Lee CH, Rajanaidu N, Tan YP, Chin CW, Lim KC, Tan ST, Lee TP, Ngui M (1983) A critical reexamination of the method of bunch quality analysis in oil palm breeding. PORIM Occas Pap 9:1–28

    Google Scholar 

  • Rao G, Zeng Y, He C, Zhang J (2016) Characterization and putative posttranslational regulation of α- and β-tubulin gene families in Salix arbutifolia. Sci Rep 6:19258

    Article  CAS  Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113(1):75–81

    Article  CAS  Google Scholar 

  • Rosenquist EA (1990) An overview of breeding technology and selection in Elaeis guineensis. In: Proceedings 1989 PORIM international palm oil development conference, Module Agriculture: 5–9 September 1989; Kuala Lumpur. Bangi: Palm Oil Research Institute of Malaysia

  • Seabra AR, Silva LS, Carvalho HG (2013) Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol 13:137

    Article  Google Scholar 

  • Seng T-Y, Ritter E, Mohamed Saad SH, Leao L-J, Singh R, Qamaruz Zaman F, Tan S-G, Syed Alwee SSR, Rao V (2016) QTLs for oil yield components in an elite oil palm (Elaeis guineensis) cross. Euphytica 212:399–425

    Article  Google Scholar 

  • Seo PJ, Ryu J, Kang SK, Park CM (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J 65(3):418–429

    Article  CAS  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182(3):851–861

    Article  CAS  Google Scholar 

  • Shin B, Choi G, Yi H, Yang S, Cho I, Kim J, Lee S, Paek N-C, Kim J-H, Song P-S, Choi G (2002) AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J 30(1):23–32

    Article  CAS  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ETL, Abdul Manaf MA, Rosli R, Nookiah R, Ooi LC-L, Ooi S-E, Chan K-L, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature. https://doi.org/10.1038/nature12309

    Article  PubMed  PubMed Central  Google Scholar 

  • Skirpan AL, Dowd PE, Sijacic P, Jaworski CJ, Gilroy S, Kao TH (2006) Identification and characterization of PiORP1, a Petunia oxysterol-binding-protein related protein involved in receptor-kinase mediated signaling in pollen, and analysis of the ORP gene family in Arabidopsis. Plant Mol Biol 61(4–5):553–565

    Article  CAS  Google Scholar 

  • Smirnova A, Leide J, Riederer M (2013) Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion. Plant Physiol 161(1):196–209

    Article  CAS  Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD, Silflowa CD (1992) The small genome of Arabidopsis contains at least nine expressed β-tubulin genes. Plant Cell 4:549–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23(3):1000–1013

    Article  CAS  Google Scholar 

  • Stecker KE, Minkoff BB, Sussman MR (2014) Phosphoproteomic analyses reveal early signalling events in the osmotic stress response. Plant Physiol 165(3):1171–1187

    Article  CAS  Google Scholar 

  • Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Li Wang (2015) Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS ONE 10(3):e0119054

    Article  Google Scholar 

  • Teh CK, Ong AL, Kwong QB, Apparow S, Chew FT, Mayes S, Mohamed M, Appleton DR, Kulaveerasingam H (2016) Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm. Sci Rep 6:19075

    Article  CAS  Google Scholar 

  • Teoh CH (2002) The palm oil industry in Malaysia: from seed to frying pan. WWF Malaysia. http://assets.panda.org/downloads/oilpalmchainpartaandb_esri.pdf. Accessed 25 May 2015

  • Ting N-C, Jansen J, Nagappan J, Ishak Z, Chin CW, Tan S-G, Cheah S-C, Singh R (2013) Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers. PLoS ONE 8(1):e53076

    Article  CAS  Google Scholar 

  • Ting N-C, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LC-L, Chin CW, Arulandoo X, Seng T-Y, Syed Alwee SSR, Ithnin M, Singh R (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genom 15:309

    Article  Google Scholar 

  • Ting N-C, Yaakub Z, Kamaruddin K, Mayes S, Massawe F, Sambanthamurthi R, Jansen J, Low ETL, Ithnin M, Kushairi A, Arulandoo X, Rosli R, Chan K-L, Amiruddin N, Sritharan K, Lim CC, Nookiah R, Mohd Din A, Singh R (2016) Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm. BMC Genom 17:289

    Article  Google Scholar 

  • Tranbarger TJ, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584

    Article  CAS  Google Scholar 

  • van Ooijen JW (2006) JoinMap®4.1, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • van Ooijen JW (2009) MapQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V., Wageningen

    Google Scholar 

  • Wahid MB, Simeh MA (2009) Issues related to production cost of palm oil in Malaysia. Oil Palm Ind Econ J 9(2):1–2

    Google Scholar 

  • Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:8609

    Article  CAS  Google Scholar 

  • Woittiez LS, van Wijk MT, Slingerland M, van Noordwijk M, Giller KE (2017) Yield gaps in oil palm: a quantitative review of contributing factors. Eur J Agron 83:57–77

    Article  Google Scholar 

  • Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H (2017) Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genom 18(1):470

    Article  Google Scholar 

  • Xia Y, Ning Z, Bai G, Li R, Yan G, Siddique KHM, Baum M, Guo P (2012) Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in Barley. PLoS ONE 7(5):e37573

    Article  CAS  Google Scholar 

  • Xie DW, Wang XN, Fu LS, Sun J, Zheng W, Li ZF (2015) Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress. J Genet. 94(1):55–65

    Article  CAS  Google Scholar 

  • Zhang Y, McCartney AJ, Zolov SN, Ferguson CJ, Meisler MH, Sutton MA, Weisman LS (2012) Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P2 and PI(5)P. EMBO J 31(16):3442–3456

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

  • Zulkifli H, Halimah M, Chan KW, Choo YM, Mohd Basri W (2010) Life cycle assessment for oil palm fresh fruit bunch production from continued land use for oil palm planted on mineral soil (Part 2). J Oil Palm Res 22:887–894

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director-General of Malaysian Palm Oil Board for permission to publish this paper. Part of the work was carried out at Biometris, Wageningen University and Research Centre, the Netherlands. The authors thank Dr. Rex Bernardo from University of Minnesota for permission to use the G Model software. We would also like to extend our appreciation to Ms. Maizura Azwanie Mohd Zarawi for her technical assistance in PCR. We thank Bioinformatics team at Malaysian Palm Oil Board for providing the automatic computational pipeline used for sequence homology search and sequence extraction.

Funding

This study was funded by the Malaysian Palm Oil Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, NC., Mayes, S., Massawe, F. et al. Putative regulatory candidate genes for QTL linked to fruit traits in oil palm (Elaeis guineensis Jacq.). Euphytica 214, 214 (2018). https://doi.org/10.1007/s10681-018-2296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2296-y

Keywords

Navigation