Skip to main content
Log in

Genetic mapping of quantitative trait loci (QTL) for resistance to septoria tritici blotch in a winter wheat cultivar Liwilla

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Septoria tritici blotch (STB), caused by Mycosphaerella graminicola (anamorph Septoria tritici, syn. Zymoseptoria tritici), is present in most wheat-growing areas worldwide. Resistance breeding appears to be the most sensible approach to disease control. An attempt was made to identify loci associated with resistance to STB in a resistant winter wheat cultivar Liwilla. In the study we used a set of 74 doubled-haploid lines generated from anthers of F1 hybrids between the resistant cultivar Liwilla and susceptible cultivar Begra. Four monopycnidiospore isolates of M. graminicola with diverse pathogenicity were used in tests on seedlings under controlled growth conditions and on adult plants under polytunnel conditions over a six year period. In both environments, the percentage leaf area covered by necrosis and covered by pycnidia were measured; time to heading and plant height were also recorded for the polytunnel experiments. Seven isolate-specific quantitative trait loci (QTLs) were associated with STB resistance: QStb.ihar-3A.2, QStb.ihar-6A, QStb.ihar-7A.2, QStb.ihar-1B, QStb.ihar-2B.2, QStb.ihar-3B, and QStb.ihar-5D. QTL on chromosome 5D and 7A represent novel STB resistance loci. The phenotypic variance explained by individual QTLs ranged from 9.5 % to 50.3 %. Three QTLs detected on chromosomes 3A, 7A and 1B showed major effects and were detected consistently in different environments. The locations of QStb.ihar-3A.2 and QStb.ihar-1B coincide with the resistance genes Stb6 and Stb11, respectively. Locus QStb.ihar-3B and a QTL for time to heading mapped to the same location, but are most likely not associated. Most of the mapped QTLs explain the resistance associated with both low necrosis and low pycnidia coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology 93:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Adhikari TB, Yang X, Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, Goodwin SB (2004a) Molecular mapping of Stb1, a potentially durable gene for resistance to septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  PubMed  CAS  Google Scholar 

  • Adhikari TB, Wallwork H, Goodwin SB (2004b) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    Article  CAS  Google Scholar 

  • Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB (2004c) Molecular mapping of the Stb4 gene for resistance to septoria tritici blotch in wheat. Phytopathology 94:1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Angus WJ, Fenwick PM (2008) Using genetic resistance to combat pest and disease threats. Arable Cropping in a Changing Climate, Home Grown Cereals Authority (HGCA) Conference, 23 and 24 January 2008. HGCA, London, pp 21–27

    Google Scholar 

  • Arama PF, Parlevliet JE, van Silfhout CH (1999) Heading date and resistance to septoria tritici blotch in wheat not genetically associated. Euphytica 106:63–68

    Article  Google Scholar 

  • Arraiano LS, Brown JKM (2006) Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol 55:726–738

    Article  Google Scholar 

  • Arraiano LS, Brading PA, Brown JKM (2001a) A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol 50:339–346

    Article  Google Scholar 

  • Arraiano LS, Worland AJ, Ellerbrook C (2001b) Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764

    Article  CAS  Google Scholar 

  • Arraiano LS, Chartrain L, Bossolini E, Slatter HN, Keller B, Brown JKM (2007) A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol 56:73–78

    Article  CAS  Google Scholar 

  • Arraiano LS, Ballam N, Fenwick PM, Chapman C, Feuerhelm D, Howell P, Smith SJ, Widdowson JP, Brown JKM (2009) Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat. Plant Pathol 58:910–922

    Article  Google Scholar 

  • Baltazar BM, Scharen AL, Kronstad WE (1990) Association between dwarfing genes ‘Rht1’ and ‘Rht2’ and resistance to septoria tritici blotch in winter wheat (Triticum aestivum L. em Thell). Theor Appl Genet 79:422–426

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, pp 145–162

    Google Scholar 

  • Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the septoria tritici blotch pathogen. Phytopathology 92:439–445

    Article  PubMed  Google Scholar 

  • Brunner PC, Stefanato FL, McDonald BA (2008) Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement. Mol Plant Pathol 9(3):305–316

    Article  PubMed  CAS  Google Scholar 

  • Chartrain L, Brading PA, Widdowson JP, Brown JKM (2004) Partial resistance to septoria tritici Blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94:497–504

    Article  PubMed  CAS  Google Scholar 

  • Chartrain L, Berry ST, Brown JKM (2005a) Resistance of wheat line Kavkaz-K4500 L.6.A.4 to septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95:664–671

    Article  PubMed  CAS  Google Scholar 

  • Chartrain L, Brading PA, Brown JKM (2005b) Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol 54:134–143

    Article  CAS  Google Scholar 

  • Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F, Brown JKM (2005c) Genetics of resistance to septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theor Appl Genet 110:1138–1144

    Article  PubMed  CAS  Google Scholar 

  • Chartrain L, Sourdille P, Bernard M, Brown JKM (2009) Identification and location of Stb9, a gene for resistance to septoria tritici blotch in wheat cultivars Courtot and Tonic. Plant Pathol 58:547–555

    Article  CAS  Google Scholar 

  • Cohen L, Eyal Z (1993) The histology of processes associated with the infection of resistant and susceptible wheat cultivars with septoria tritici. Plant Pathol 42:737–743

    Article  Google Scholar 

  • Conneally PM, Edwards JH, Kidd KK, Lalouel J-M, Morton NE, Ott J, White R (1985) Report of the committee and methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359

    Article  PubMed  CAS  Google Scholar 

  • Czembor PC, Arseniuk E, Czaplicki A, Song QJ, Cregan PB, Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46:546–554

    Article  PubMed  CAS  Google Scholar 

  • Czembor PC, Radecka M, Arseniuk E (2007a) Mapowanie loci odporności pszenicy ozimej na septoriozę paskowaną powodowaną przez grzyba Mycosphaerella graminicola. Biul IHAR 243:289–299

    Google Scholar 

  • Czembor PC, Radecka M, Arseniuk E (2007b) Mapa molekularna pszenicy (Triticum aestivum L.). Biul IHAR 243:279–288

    Google Scholar 

  • Czembor PC, Radecka-Janusik M, Mańkowski D (2011) Virulence spectrum of Mycosphaerella graminicola isolates on wheat genotypes carrying known resistance genes to septoria tritici blotch. J Phytopathol 159:146–154

    Article  Google Scholar 

  • Dubcovsky J, Luo MC, Dvorak J (1995) Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the wheat Phl locus. Proc Natl Acad Sci USA 92:6645–6649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Duncan KE, Howard RJ (2000) Cytological analysis of wheat infection by leaf blotch pathogen Mycosphaerella graminicola. Mycol Res 104:1074–1082

    Article  Google Scholar 

  • Eriksen L, Borum F, Jahoor A (2003) Inheritance and localization of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet 107:515–527

    Article  PubMed  CAS  Google Scholar 

  • Eyal Z (1981) Integrated control of septoria diseases of wheat. Plant Dis 65(9):763–768

    Article  Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM, van Ginkel M (1987) The Septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Fraaije BA, Cools HJ, Fountaine J, Lovell DJ, Motteram J, West JS, Lucas JA (2005) Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola. Phytopathology 95:933–941

    Article  PubMed  CAS  Google Scholar 

  • Goodwin SB (2007) Back to basics and beyond: increasing the level of resistance to septoria tritici blotch in wheat. Australas Plant Pathol 36:532–538

    Article  Google Scholar 

  • Goodwin SB, Cavaletto JR, Lowe I, Thompson I, Xu SX, Adhikari TB, Dubcovsky J (2008) Validation of a new map location for the Stb3 gene for resistance to septoria tritici blotch in wheat. In: The 7th international Mycosphaerella and Stagonospora symposium—program, presentations, abstracts, Ascona, Switzerland. http://www.path.ethz.ch/news/conferences/Mycosphaerella_Ascona_2007/00022_posterabstract.pds. Accessed 18–22 Aug 2008

  • GrainGenes: a database for Triticea and Avena (2011). http://wheat.pw.usda.gov/GG2/index.shtml. Accessed 26 Oct 2011

  • Haley C, Andersson L (1997) Linkage mapping of quantitative trait loci in plants and animals. In: Dear P (ed) Genome mapping—a practical approach. Oxford University Press, New York, pp 49–71

    Google Scholar 

  • Jing HC, Lovell D, Gutteride R, Jenk D, Kornyukhin D, Mitrofanova OP, Kema GHJ, Hammond-Kosack KM (2008) Phenotypic and genetic analysis of the Triticum monococcumMycosphaerella graminicola interaction. New Phytol 179:1121–1132

    Article  PubMed  Google Scholar 

  • Jlibene M, Gustafson JP, Rajaram S (1992) A field disease evaluation method for selecting wheats resistant to Mycosphaerella graminicola. Plant Breed 108:26–32

    Article  Google Scholar 

  • Jlibene M, Gustafson JP, Rajaram S (1994) Inheritance of resistance to Mycosphaerella graminicola in hexaploid wheat. Plant Breed 112:301–310

    Article  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kelm C, Tabib Ghaffary M, Bruelheide H, Röder MS, Miersch S, Weber WE, Kema GHJ, Saal B (2012) The genetic architecture of seedling resistance to septoria tritici blotch in the winter wheat doubled-haploid population Solitär × Mazurka. Mol Breed 29:813–830

    Article  Google Scholar 

  • Kema GHJ, van Silfhout CH (1997) Genetic variation for virulence and resistance in wheat-Mycosphaerella graminicola pathosystem. III. Comparative seedling and adult plant experiments. Phytopathology 87:266–272

    Article  PubMed  CAS  Google Scholar 

  • Kema GHJ, Annone JG, Sayoud R, van Silfhout CH, van Ginkel M, de Bree J (1996) Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interactions between pathogen, isolates and host cultivars. Phytopathology 86:200–212

    Article  Google Scholar 

  • KOMUGI (2011) version 377.7. Wheat Genetic Resources Database, http://www.shigen.nig.ac.jp/wheat/komugi/. Accessed 26 Oct 2011

  • Kosellek C,  Pillen K, Nelson JC, Eberhard Weber W, Saal B (2013). Inheritance of field resistance to Septoria tritici blotch in the wheat doubled-haploid population Solitär × Mazurka. Euphytica. 194:161–176.

  • Lander E, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Y, Zhang L, Thompson IA, Goodwin SB, Ohm HW (2013) Molecular mapping re-locates the Stb2 gene for resistance to septoria tritici blotch derived from cultivar Veranopolis on wheat chromosome 1BS. Euphytica 190:145–156

    Article  CAS  Google Scholar 

  • Mądry W, Mańkowski DR, Kaczmarek Z, Krajewski P, Studnicki M (2010) Metody statystyczne oparte na modelach liniowych w zastosowaniach do doświadczalnictwa, genetyki i hodowli roślin. Monografie i rozprawy naukowe IHAR 34

  • Marcel TC, Gorguet B, Truong Ta M, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755

    Article  PubMed  Google Scholar 

  • McCartney CA, Brûlé-Babel AL, Lamari L (2002) Inheritance of race-specific resistance to Mycosphaerella graminicola in wheat. Phytopathology 92:138–144

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Brûlé-Babel AL, Lamari L, Somers DJ (2003) Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • McDonald BA, Zhan J, Yarden O, Hogan K, Garton J, Pettway RE (1999) The population genetics of Mycosphaerella graminicola and Stagonospora nodorum. In: Lucas JA, Bowyer P, Anderson HM (eds) Septoria on cereals: a study of pathosystems. CABI, Bristol, pp 44–69

    Google Scholar 

  • Miedaner T, Risser P, Paillard S, Schnurbusch T, Keller B, Hartl L, Holzapfel J, Korzun V, Ebmeyer E, Utz HF (2012) Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breed 29:731–742

    Article  CAS  Google Scholar 

  • Orton ES, Deller S, Brown JK (2011) Mycosphaerella graminicola: from genomics to disease control. Mol Plant Pathol 12:413–424

    Article  PubMed  Google Scholar 

  • Paull JG, Pallota MA, Langridge P, The TT (1994) RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045

    PubMed  CAS  Google Scholar 

  • Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raman R, Milgate AW (2012) Molecular breeding for septoria tritici blotch resistance in wheat. Cereal Res Commun 40:451–466

    Article  CAS  Google Scholar 

  • Raman R, Milgate AW, Imtiaz M, Tan MK, Raman H, Lisle C, Coombes N, Martin P (2009) Molecular mapping and physical location of major gene conferring seedling resistance to septoria tritici blotch in wheat. Mol Breed 24:153–164

    Article  CAS  Google Scholar 

  • Regent Instruments, Inc. (2004) WinCam User’s Guide. Version 2004a. Regent Instruments, Inc., Quebec, Canada

  • Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T (2011) Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology 101:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Rosielle AA (1972) Sources of resistance in wheat to speckled leaf blotch caused by Septoria tritici. Euphytica 21:152–161

    Article  Google Scholar 

  • Rosielle AA, Brown AGP (1979) Inheritance, heritability and breeding behaviour of three sources of resistance to Septoria tritici in wheat. Euphytica 28:285–392

    Article  Google Scholar 

  • Rowlings JO, Pantula SG, Dickey DA (2001) Applied regression analysis: a research tool, 2nd edn. Springer, New York

    Google Scholar 

  • SAS Institute, Inc. (2009) SAS/STAT 9.2 user’s guide, 2nd edn. SAS Institute, Inc., Cary

    Google Scholar 

  • Shaw MW, Royle DJ (1993) Factors determining the severity of epidemics of Mycosphaerella graminicola (Septoria tritici) on winter wheat in the UK. Plant Pathol 42:882–899

    Article  Google Scholar 

  • Simon MR, Cordo CA (1998) Diallele analysis of four resistance components to septoria tritici in six crosses of wheat (Triticum aestivum). Plant Breed 117:123–126

    Article  Google Scholar 

  • Simón MR, Cordo CA, Perelló AE, Larrán S, Ayala F, Bayo D, Struik PC (2001) Associations between heading date or plant height and resistance to septoria tritici blotch in the adult stage of wheat. XVI Plant Breeding Congress, 9–14 Sep 2001. In: EUCARPIA, Edinburgh, Scotland, pp 29–30

  • Simón MR, Ayala FM, Cordo CA, Röder MS, Börner A (2004a) Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch by Mycosphaerella graminicola in wheat. Euphytica 138:41–48

    Article  Google Scholar 

  • Simón MR, Worland AJ, Struik PC (2004b) Influence of plant height and heading date on the expression of the resistance to septoria tritici blotch in near isogenic lines of wheat. Crop Sci 44:2078–2085

    Article  Google Scholar 

  • Somasco OA, Qualset CO, Gilchrist DG (1996) Single-gene resistance to septoria tritici blotch in the spring wheat cultivar ‘Tadiani’. Plant Breed 115:261–267

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Suffert F, Sache I, Lannou C (2013) Assessment of quantitative traits of aggressiveness in Mycosphaerella graminicola on adult wheat plants. Plant Pathol. doi:10.111.1/ppa.12050

    Google Scholar 

  • Tabib Ghaffary SM, Robert O, Laurent V, Lonnet P, Margalé E, van der Lee TAJ, Visser RGF, Kema GHJ (2011) Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor Appl Genet 123:741–754

    Article  PubMed Central  Google Scholar 

  • Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ (2012) New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124:125–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Torriani SFF, Brunner PC, McDonald BA, Sierotzki H (2009) QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 65:155–162

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2009) MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V., Wageningen

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wilson RE (1985) Inheritance of resistance to septoria tritici in wheat. In: Scharen AL (ed) Septoria of cereals: proceedings of workshop. Montana State University, Bozeman, pp 33–35

    Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  PubMed  CAS  Google Scholar 

  • Zhan J, Pettway RE, McDonald BA (2003) The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol 38:286–297

    Article  PubMed  CAS  Google Scholar 

  • Zhan J, Mundt CC, McDonald BA (2007) Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: evidence from empirical study in the wheat-Mycosphaerella graminicola system. Int J Parasitol 37:861–870

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Haley SD, Jin Y (2001) Inheritance of septoria tritici blotch resistance in winter wheat. Crop Sci 41:323–326

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the BIOEXPLOIT (FOOD-CT-2005-513959, Exploitation of Natural Plant Biodiversity for the Pesticide-free Production of Food) 6th European Union Framework Programme. We are grateful to two anonymous referees for their constructive comments on a previous version of the manuscript. The authors thank Alina Sołtys for excellent technical assistance, Dariusz Mańkowski for help with the statistical analysis, and Adam Łukaszewski for critical reading of an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł C. Czembor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radecka-Janusik, M., Czembor, P.C. Genetic mapping of quantitative trait loci (QTL) for resistance to septoria tritici blotch in a winter wheat cultivar Liwilla. Euphytica 200, 109–125 (2014). https://doi.org/10.1007/s10681-014-1157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1157-6

Keywords

Navigation