Skip to main content
Log in

Inheritance of resistance to Pseudomonas syringae pv. actinidiae and genetic correlations with fruit characters in a diploid Actinidia chinensis (kiwifruit) population

  • Published:
Euphytica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bacterial canker of kiwifruit, caused by a virulent strain of Pseudomonas syringae pv. actinidiae (Psa), has resulted in serious damage to kiwifruit industry worldwide. The variability and inheritance of resistance to Psa and fruit characters in a disconnected factorial mating population of diploid Actinidia chinensis Planch were investigated. Significant variation in all characters was found, and this appeared to be under polygenic control. Results indicated the extent and nature of genetic variation in Psa resistance available in our breeding gene pool. Estimates of narrow-sense heritability were moderate-high to high for Psa resistance, fruit weight, dry matter content (DM) and soluble solids contents (SSC), but low for fruit number per vine. The moderate-high heritability for Psa resistance indicated a genetic control of the observed variation, and selection for Psa resistance could be possible. Psa resistance had a high negative genetic correlation with fruit number per vine, but a moderate positive correlation with fruit weight, DM and SSC. The results implied that yield penalty of Psa resistance might exist in kiwifruit. Thus, selection strategies based on Psa resistance need to take account of its negative correlation with fruit number per vine. Male and female parents useful for improving Psa resistance and fruit characters simultaneously were identified. Two full-sib families were outstanding, as they combined high degrees of resistance to Psa with high yield components and reasonable amounts of DM and SSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A (2009a) Current status of bacterial canker spread on kiwifruit in Italy. Aust Plant Dis Notes 4:34–36

    Google Scholar 

  • Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A (2009b) Occurrence of Pseudomonas syringae pv. actinidiae in Jin Tao kiwi plants in Italy. Phytopathol Mediterr 48:299–301

    Google Scholar 

  • Banerjee R, Das NK, Doss SG, Saha AK, Bajpai AK, Bindroo BB (2012) Narrow sense heritability estimates of bacterial leaf spot resistance in pseudo F2 (F1) population of mulberry (Morus spp.). Eur J Plant Pathol 133:537–544

    Article  Google Scholar 

  • Beatson RA (1991) Inheritance of fruit characters in Actinidia deliciosa. Acta Hort 297:79–86

    Google Scholar 

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bokmeyer JM, Bonos SA, Meyer WA (2009) Inheritance characteristics of brown patch resistance in tall fescue. Crop Sci 49:2302–2308

    Article  Google Scholar 

  • Brevis JC, Chicaiza O, Khan IA, Jackson L, Morris CF, Dubcovsky J (2008) Agronomic and quality evaluation of common wheat near-isogenic lines carrying the leaf rust resistance gene Lr47. Crop Sci 48:1441–1451

    Article  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM (2003) A cost of disease resistance: paradigm or peculiarity? Trends Genet 19:667–671

    Article  CAS  PubMed  Google Scholar 

  • Cheng CH, Seal AG, Boldingh HL, Marsh KB, MacRae EA, Murphy SJ, Ferguson AR (2004) Inheritance of taste characters and fruit size and number in a diploid Actinidia chinensis (kiwifruit) population. Euphytica 138:185–195

    Article  CAS  Google Scholar 

  • Cheng CH, Seal AG, MacRae EA, Wang MY (2011) Identifying volatile compounds associated with sensory and fruit attributes in diploid Actinidia chinensis (kiwifruit) using multivariate analysis. Euphytica 181:179–195

    Article  CAS  Google Scholar 

  • Chikh-Rouhou H, Gonzalez-Torres R, Oumouloud A, Alvarez JM (2011) Inheritance of race 1.2 Fusarium wilt resistance in four melon cultivars. Euphytica 182:177–186

    Article  CAS  Google Scholar 

  • Dickerson GE (1969) Techniques for research in quantitative animal genetics. In: Chapman AB (ed) Techniques and procedures in animal science research. American Society of Animal Science, Albany, pp 36–79

    Google Scholar 

  • Egesi CN, Odu BO, Ogunyemi S, Asiedu R, Hughes J (2007) Evaluation of water yam (Dioscorea alata L.) germplasm for reaction to yam anthracnose and virus diseases and their effect on yield. J Phytopathol 155:536–543

    Article  Google Scholar 

  • Eubanks MD, Carr DE, Murphy JF (2005) Variation in the response of Mimulus guttatus (Scrophulariaceae) to herbivore and virus attack. Evol Ecol 19:15–27

    Article  Google Scholar 

  • Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA, Vanneste JL, Manning MA (2011) First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Aust Plant Dis Notes 6:67–71

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • Fang Y, Zhu X, Wang Y (1990) Preliminary studies on kiwifruit diseases in Hunan province. Sichuan Fruit Sci Technol 18:28–29

    Google Scholar 

  • Ferrante P, Scortichini M (2009) Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in Central Italy. J Phytopathol 157:768–770

    Article  Google Scholar 

  • Ferrante P, Scortichini M (2010) Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol 59:954–962

    Article  CAS  Google Scholar 

  • Ferrante P, Fiorillo E, Marcelletti S, Marocchi F, Mastroleo M, Simeoni S, Scortichini M (2012) The importance of the main colonization and penetration sites of Pseudomonas syringae pv. actinidiae and prevailing weather conditions in the development of epidemics in yellow kiwifruit, recently observed in central Italy. J Plant Pathol 94:455–461

    Google Scholar 

  • Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107

    Article  CAS  Google Scholar 

  • Frank SA (1993) Coevolutionary genetics of plants and pathogens. Evol Ecol 7:45–75

    Article  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang LM, Weng YQ, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilmour AR, Cullis BR, Welham S, Gogel B, Thompson R (2004) An efficient computing strategy for prediction in mixed linear models. Comput Stat Data Anal 44:571–586

    Article  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2012) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  PubMed  Google Scholar 

  • Hackett CA, Meyer RC, Thomas WTB (2001) Multi-trait QTL mapping in barley using multivariate regression. Genet Res 77:95–106

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR (2007) History, contribution, and future of quantitative genetics in plant breeding: lessons from maize. Crop Sci 47:S4–S19

    Article  Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han YH, Bonos SA, Clarke BB, Meyer WA (2006) Inheritance of resistance to gray leaf spot disease in perennial ryegrass. Crop Sci 46:1143–1148

    Article  Google Scholar 

  • Hardner CM, Bally ISE, Wright CL (2012) Prediction of breeding values for average fruit weight in mango using a multivariate individual mixed model. Euphytica 186:463–477

    Google Scholar 

  • Hutton SF, Scott JW, Schuster DJ (2012) Recessive resistance to Tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on Chromosome 4. HortScience 47:324–327

    Google Scholar 

  • Kalinina O, Zeller SL, Schmid B (2011) Competitive performance of transgenic wheat resistant to powdery mildew. PLoS One 6:e28091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kellerhals M (2009) Introduction to apple (Malus x domestica). In: Gardiner SE, Folta KM (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 73–84

    Chapter  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Article  Google Scholar 

  • Kjær B, Jensen HP, Jensen J, Jorgensen JH (1990) Associations between three ml-o powdery mildew resistance genes and agronomic traits in barley. Euphytica 46:185–193

    Article  Google Scholar 

  • Koh J, Cha B, Chung H, Lee D (1994) Outbreak and spread of bacterial canker in kiwifruit. Korean J Plant Pathol 10:68–72

    Google Scholar 

  • Luby JJ, Alspach PA, Bus VGM, Oraguzie NC (2002) Field resistance to fire blight in a diverse apple (Malus sp.) germplasm collection. J Am Soc Hort Sci 127:245–253

    Google Scholar 

  • Mazzaglia A, Studholme DJ, Taratufolo MC, Cai R, Almeida NF, Goodman T, Guttman DS, Vinatzer BA, Balestra GM (2012) Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 7:1–11

    Article  Google Scholar 

  • Morales FJ (2001) Conventional breeding for resistance to Bemisia tabaci-transmitted geminiviruses. Crop Protect 20:825–834

    Article  Google Scholar 

  • Olczak-Woltman H, Bartoszewski G, Madry W, Niemirowicz-Szczytt K (2009) Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. lachrymans) in cucumber and identification of molecular markers linked to resistance. Plant Pathol 58:145–151

    Article  Google Scholar 

  • Ortelli S, Winzeler H, Winzeler M, Fried PM, Nosberger J (1996) Leaf rust resistance gene Lr9 and winter wheat yield reduction: 1. Yield and yield components. Crop Sci 36:1590–1595

    Article  Google Scholar 

  • Piepho HP, Mohring J (2011) On estimation of genotypic correlations and their standard errors by multivariate REML using the MIXED procedure of the SAS system. Crop Sci 51:2449–2454

    Article  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc. (2008) SAS/STAT 9.2 User’s Guide. SAS Institute Inc, Gary

    Google Scholar 

  • Searle SR (1961) Phenotypic, genetic and environmental correlations. Biometrics 17:474–480

    Article  Google Scholar 

  • Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M (1989) Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. Ann Phytopathol Soc Jpn 55:427–436

    Article  Google Scholar 

  • Sharp GL, Martin JM, Lanning SP, Blake NK, Brey CW, Sivamani E, Qu R, Talbert LE (2002) Field evaluation of transgenic and classical sources of Wheat streak mosaic virus resistance. Crop Sci 42:105–110

    Article  PubMed  Google Scholar 

  • Singh RP, HuertaEspino J (1997) Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Sci 37:390–395

    Article  Google Scholar 

  • St Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Madsen P, Nielsen US, Zhang Y, Lund MS, Su G (2009) Comparison between a sire model and an animal model for genetic evaluation of fertility traits in Danish Holstein population. J Dairy Sci 92:4063–4071

    Article  CAS  PubMed  Google Scholar 

  • Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M (1989) Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of canker of kiwifruit in Japan. Ann Phytopatho Soc Jpn 55:437–444

    Article  Google Scholar 

  • Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  CAS  PubMed  Google Scholar 

  • Tiffin P (2000) Are tolerance, avoidance, and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? Am Nat 155:128–138

    Article  PubMed  Google Scholar 

  • Vanneste JL (2012) Pseudomonas syringae pv. actinidiae (Psa): a threat to the New Zealand and global kiwifruit industry. N Z J Crop Hort Sci 40:265–267

    Article  Google Scholar 

  • Vanneste JL, Kay C, Onorato R, Yu J, Cornish DA, Spinelli F, Max S (2011a) Recent advances in the characterisation and control of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker on kiwifruit. Acta Hort 913:443–456

    CAS  Google Scholar 

  • Vanneste JL, Yu J, Cornish DA, Max S, Clark G (2011b) Presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit, on symptomatic and asymptomatic tissues of kiwifruit. N Z Plant Protect 64:241–245

    CAS  Google Scholar 

  • Yanchuk AD (1996) General and specific combining ability from disconnected partial diallels of coastal Douglas-fir. Silvae Genet 45:37–45

    Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Zhu DY, Lawes GS, Gordon IL (2002) Estimates of genetic variability and heritability for vegetative and reproductive characters of kiwifruit (Actinidia deliciosa). Euphytica 124:93–98

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Plant & Food Research, New Zealand. I thank Peter Alspach, Ron Beatson, Ross Ferguson and anonymous reviewers for valuable comments on the manuscript and to the staff at the Te Puke Research Centre for their assistance with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-Hong Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, CH. Inheritance of resistance to Pseudomonas syringae pv. actinidiae and genetic correlations with fruit characters in a diploid Actinidia chinensis (kiwifruit) population. Euphytica 198, 305–315 (2014). https://doi.org/10.1007/s10681-014-1107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1107-3

Keywords

Navigation