Skip to main content
Log in

Genetic analysis of plant height using two immortalized populations of “CRI12 × J8891” in Gossypium hirsutum L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant height is an important plant architecture trait that determines the canopy structure, photosynthetic capacity and lodging resistance of upland cotton populations. To understand the genetic basis of plant height for marker-assisted breeding, quantitative trait loci (QTL) analysis was conducted based on the genetic map of recombinant inbred lines (RILs) derived from the cross “CRI12 × J8891” (Gossypium hirsutum L.). Three methods, including composite interval mapping, multiple interval mapping and multi-marker joint analysis, were used to detect QTL across multiple environments in the RILs and in the immortalized F2 population developed through intermating between RILs. A total of 19 QTL with genetic main effects and/or genetic × environment interaction effects were identified on 15 chromosomes or linkage groups, each explaining 5.8–14.3 % of the phenotypic variation. Five digenic epistatic QTL pairs, mainly involving additive × additive and/or dominance × dominance, were detected in different environments. Seven out of eight interacting loci were main-effect QTL, suggesting that these loci act as major genes as well as modifying genes in the expression of plant height. The results demonstrate that additive effects, dominance and epistasis are all important for the genetic constitution of plant height, with additive effects playing a more important role in reducing plant height. QTL showing stability across environments that were repeatedly detected by different methods can be used in marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adawy SS, Diab AA, Atia MAM, Hussein EHA (2008) Construction of genetic linkage map showing chromosomal regions associated with some agronomic traits in cotton. Intl J Plant Breed 2(1):27–38

    Google Scholar 

  • Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen RD (2008) Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Mol Biol 68:1–16

    Article  CAS  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2001) QTL Cartographer, Version 1.15. Department of Statistics, North Carolina State University, Raleigh, NC

  • Cheverud JM, Rountman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139:1455–1461

    CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122(8):517–1536

    Article  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  CAS  PubMed  Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Fowler JL, Ray LL (1977) Response of two cotton genotypes to five equidistant spacing patterns. Agron J 69:733–738

    Article  Google Scholar 

  • Gale MD, Youssefian S, Russell GE (1985) Dwarfing genes in wheat. Progress in plant breeding. Butterworths, London, pp 1–35

    Chapter  Google Scholar 

  • Harland SC (1918) On the genetics of crinkled dwarf rogues in Sea Island cotton. West Ind Bull 16(1):82

    Google Scholar 

  • Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Zhang QF (2003) Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100(5):2574–2579

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson JB, Ghose RLM (1937) On the occurrence of”crinkled dwarf” in Gossypium hirsutum L. J Genet 34(3):437–446

    Article  Google Scholar 

  • Kalsy HS, Garg HR (1988) Analysis of generation means for metric traits in upland cotton (Gossypium hirsutum L.). Indian J Agric Sci 58:397–399

    Google Scholar 

  • Khan MNU, Khan IA (1993) Study of gene action for some morphological plant characters in upland cotton. Pak J Agric Sci 30:94–98

    Google Scholar 

  • Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer RC, Altmann T, Melchinger AE (2007) Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175:2009–2017

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    CAS  PubMed  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153

    Article  CAS  PubMed  Google Scholar 

  • Li LZ, Lu KY, Chen ZM, Mu TM, Hu ZL, Li XQ (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180:1725–1742

    Article  PubMed  Google Scholar 

  • Liao WB, Ruan MB, Cui BM, Xu NF, Lu JJ, Peng M (2009) Isolation and characterization of a GAI/RGA-like gene from Gossypium hirsutum. Plant Growth Regul 58:35–45

    Article  CAS  Google Scholar 

  • Liu RZ, Wang BH, Guo WZ, Wang LG, Zhang TZ (2011) Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2. Theor Appl Genet 123:439–454

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Wang BH, Guo WZ, Qin YS, Wang LG, Zhang YM, Zhang TZ (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breeding 29:297–311

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • Melchinger AE, Piepho HP, Utz HF, Muminovic J, Wegenast T, Törjék O, Altmann T, Kusterer B (2007) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177(3):1827–1837

    Article  PubMed  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803

    Article  CAS  PubMed  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  CAS  PubMed  Google Scholar 

  • Murtaza N, Qayyum A, Malik W, Noor E (2006) Genetic study of yield of seed cotton and plant height in cotton genotypes. Int J Agri Biol 8(5):630–635

    Google Scholar 

  • Peng J, Richard DE, Hartley NM, Murphy PG, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Percy RG, Cantrell RG, Zhang J (2006) Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci 46:1311–1317

    Article  Google Scholar 

  • Qin YS, Liu RZ, Mei HX, Zhang TZ, Guo WZ (2009) QTL mapping for yield traits in Upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica 35(10):1812–1821

    Article  CAS  Google Scholar 

  • Reta-Sánchez DG, Fowler JL (2002) Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agron J 94:1317–1323

    Article  Google Scholar 

  • Saeed M, Guo WZ, Ullah I, Tabbasam N, Zafar Y, Rahman M, Zhang TZ (2011) QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol, 14(3). 10.2225/vol14-issue3-fulltext-3

  • Shappley ZW, Jenkins JN, Zhu McCarty JC (1998) Quantitative traits loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci 4:153–163

    Google Scholar 

  • Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY (2006) Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of cotton. Crop Sci 46:61–66

    Article  CAS  Google Scholar 

  • Siebert JD, Stewart AM (2006) Influence of plant density on cotton response to mepiquat chloride application. Agron J 98:1634–1639

    Article  Google Scholar 

  • Song XL, Zhang TZ (2009) Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci 177:317–323

    Article  CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Wang H, Zhang YM, Li XM, Masinde GL, Mohan S, Baylink DJ, Xu SZ (2005) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170:465–480

    Article  CAS  PubMed  Google Scholar 

  • Wang BH, Wu YT, Huang NT, Zhu XF, Guo WZ, Zhang TZ (2006) QTL mapping for plant architecture traits in Upland cotton using RILs and SSR Markers. Acta Genetica Sinica 33(2):161–170

    Article  CAS  PubMed  Google Scholar 

  • Wang BH, Wu YT, Guo WZ, Zhu XF, Huang NT, Zhang TZ (2007) QTL analysis and epistasis effects dissection of fiber qualities in an elite cotton hybrid grown in second-generation. Crop Sci 47:1384–1392

    Article  CAS  Google Scholar 

  • Wilkins TA, Arpat AB (2005) The cotton fiber transcriptome. Physiol Plant 124:295–300

    Article  CAS  Google Scholar 

  • Wu CT, Zhou BL, Zhang TZ (2009a) Isolation and characterization of a sterile-dwarf mutant in Asian cotton (Gossypium arboreum L.). J Genet Genomics 36(6):343–353

    Article  CAS  PubMed  Google Scholar 

  • Wu JX, McCarty JC, Saha S, Jenkins JN, Hayes R (2009b) Genetic changes in plant growth and their associations with chromosomes from Gossypium barbadense L. in G. hirsutum L. Genetica 137:57–66

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze S-H, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ (2006) Accumulation of genome-specific transcripts transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775

    Article  CAS  Google Scholar 

  • Yu SB, Li JX, Tan YF, Gao YJ, Li XH, Zhang QF, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang YM, Xu S (2005) A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 95:96–104

    Article  CAS  PubMed  Google Scholar 

  • Zhang PT, Zhu XF, Guo WZ, Yu JZ, Zhang TZ (2006a) Inheritance and QTLs tagging for ideal plant architecture of Simian 3 using molecular markers. Cotton Sci 18:13–18

    Google Scholar 

  • Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006b) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZM, Zhao MJ, Ding HP, Rong TZ, Pan GT (2006c) QTL mapping analysis of plant height and ear height of maize (Zea mays L.). Genetika 42(3):391–396

    CAS  PubMed  Google Scholar 

  • Zhang KP, Tian JC, Zhao L, Wang SS (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by the 12th Five-Year National Science and Technology Support Program (2011BAD35B05-1) and Shandong Agricultural Bioresources Innovation and Utilization Program—“Mining of Cotton Functional Genes and Elite Germplasm Improvement”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Ai, N., Zhu, X. et al. Genetic analysis of plant height using two immortalized populations of “CRI12 × J8891” in Gossypium hirsutum L.. Euphytica 196, 51–61 (2014). https://doi.org/10.1007/s10681-013-1013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1013-0

Keywords

Navigation