Skip to main content

Advertisement

Log in

Mapping the QTLs underlying drought stress at developmental stage of sorghum (Sorghum bicolor (L.) Moench) by association analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

This study was conducted to identify quantitative trait loci (QTLs) for drought tolerance in sorghum (Sorghum bicolor (L.) Moench) by association mapping using a simple sequence repeat (SSR)-marker-based diversity research set. Genotypic data for 98 SSR marker loci on ten chromosomes were used for the association analysis. The experiment was conducted under control (well-watered) and drought stress conditions, and the phenotypic values of 23 morphological traits were recorded. Drought tolerance was assessed by using a leaf drying score as a parameter of the tolerance/susceptibility: scores were assigned on a scale from 1 (most tolerant) to 9 (most susceptible). Under the control conditions, 17 QTLs associated with 12 traits were identified on chromosomes 1, 2, 4, 8, 9, and 10, with −Log10 (P) ranging from 2.5 to 7.6 and explaining 9.5–57.5 % of the total phenotypic variance for the traits. Under the drought stress conditions, nine QTLs associated with 8 traits were identified on chromosomes 1, 2, 3, and 10 that explained 9–61.2 % of the total phenotypic variance for the traits, with −Log10 (P) ranging from 2.5 to 3.5. QTLs for some traits were detected only under the drought stress condition, suggesting that these traits are important in drought tolerance. These QTLs could be used to further dissect the genetic and physiological basis of drought tolerance in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agboma M, Jones MGK, Peltonen-Sainio P, Rita H, Pehu E (1997) Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. J Agron Crop Sci 178:29–37

    Article  CAS  Google Scholar 

  • Araus JL, Slafer G, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals. What should we breed for? Ann Bot 89:925–940

    Article  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra KA, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

  • Bingham J (1966) Varietal response in wheat to water supply in the field, and male sterility caused by a period of drought in a glass house experiment. Ann Appl Biol 57:365–377

    Article  Google Scholar 

  • Blum A, Mayer J, Golan G, Sinmena B (1999) Drought tolerance of a doubled haploid line population of rice in the field. In: Genetic improvement of rice for water-limited environments. International Rice Research Institute, Los Banos, pp 319–329

    Google Scholar 

  • Borrel AK, Hammer GL, Henzel RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Holland JB, McMullen MD, Kresovich S, Acharya C, Bradbury PJ, Brown P, Browne C, Eller M, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman M, Harjes C, Guill K, Kroon D, Larsson S, Lepak N, Li H, Mitchell SE, Pressoir G, Peiffer J, Oropeza MR, Rocheford T, Romay C, Romero S, Salvo S, Villeda HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Cooper M, Van Eeuwijik FA, Chapman SC, Podllich DW, Loffler C (2006) Genotype-by-environment interactions under water-limited conditions. In: Ribaut JM (ed) Drought adaptation in cereals. Haworth Press, Goteborg, pp 51–95

    Google Scholar 

  • Crasta RR, Xu W, Rosenow DT, Mullet JE, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association of QTLs influencing premature senescence and maturity. Mol Genet Genomics 262:579–588

    Article  CAS  Google Scholar 

  • Denmead OT, Shaw RH (1960) The effect of soil moisture stress at different stages of growth on development and yield of corn. Agron J 52:272–274

    Article  Google Scholar 

  • Doggett H (1988) Tropical agriculture series, sorghum, 2nd edn. Longman Scientific & Technical, Essex

    Google Scholar 

  • El Mannai Y, Shehzad T, Okuno K (2011) Variation in flowering time in sorghum core collection and mapping of QTLs controlling flowering time by association analysis. Genet Resour Crop Evol 58:983–989

    Article  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Habyarimana E, Lorenzoni C, Busconi M (2010) Search for new stay- green sources in Sorghum bicolor (L.) Moench. Maydica 55:187–194

    Google Scholar 

  • Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain the high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Google Scholar 

  • Hillel D, Rosenzweig C (2002) Desertification in relation to climate variability and change. Adv Agron 77:1–38

    Article  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  PubMed  CAS  Google Scholar 

  • IBPGR and ICRISAT (1993) Descriptors for sorghum [Sorghum bicolor (L.) Moench]. IBPGR, ICRISAT, Rome, Patancheru

    Google Scholar 

  • IRRI (1996) Standard evaluation system for rice. International Rice Research Institute, Philippines

    Google Scholar 

  • Ji XM, Raveendran M, Oano R, Ismail A, Lafitte R, Bruskiewich R, Cheng SH, Bennet J (2005) Tissue specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Mol Biol 59:945–964

    Article  PubMed  CAS  Google Scholar 

  • John A (1990) Food crops and drought. CTA Macmillan Educational Limited, London, p 133

    Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Kassahun B, Bidinger FR, Hash CT, Kuruvinashetti MS (2009) Staygreen expression in early generation sorghum (Sorghum bicolor L. Moench) QTL introgression lines. Euphytica 172:351–362

    Article  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen H (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Google Scholar 

  • Lafitte R, Blum A, Atlin G (2003) Using secondary traits to help identify drought-tolerant genotypes. In: Fischer KS, Lafitte R, Fukai S, Atlin G, Hardy B (eds) Breeding rice for drought prone environments. IRRI, Los Banos, pp 37–48

    Google Scholar 

  • Li CC (1956) The concept of path coefficient and its impact on population genetics. Biometrics 12:190–210

    Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improved crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Mace ES, Sing V, Van Oosteron EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  PubMed  CAS  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  PubMed  CAS  Google Scholar 

  • McPherson HG, Boyer JS (1977) Regulation of grain yield by photosynthesis in maize subjected to a water deficiency. Agron J 69:714–718

    Article  Google Scholar 

  • Morris PG, Ramu P, Deshpande PS, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown JP, Acharya BC, Mitchell ES, Harriman J, Glaubitz CJ, Buckler SE, Kresovich S (2012) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 10:1–6

    Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson JO, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Stahl E, Oefner PJ, Stahl E, Weigel D (2002) The extent of linkage disequilibrium in the highly selfing species Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Rosenow DT, Clark LE (1995) Drought and lodging resistance for a quality sorghum crop. In: Proceedings of the 5th annual corn and sorghum industry research conference, American Seed Trade Association, Chicago, pp 82–97

  • Rosenow DT, Ejeta G, Clark LE, Gilbert ML, Henzell RG, Borrell AK, Muchow RC (1996) Breeding for pre- and post-flowering drought stresses resistance in sorghum. Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, India, pp 400–41

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648

    Article  PubMed  CAS  Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimara CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M, Margarido GRA, Oliveira BF, Schaffert RE, Garcia AAF, van Eeuwijk FA, Magalhaes JV (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phonological and plant height differences. Theor Appl Genet 124:233–246

    Article  Google Scholar 

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10:1067–1073

    Article  Google Scholar 

  • Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L). Ann Bot 48:623–633

    Google Scholar 

  • Saini HS, Westgate ME (2000) Reproductive development in grain crops under drought. Adv Agron 68:59–96

    Article  Google Scholar 

  • Salter PJ, Goode JE (1967) Crop responses to water at different stages of growth. Commonwealth Agricultural Bureaux, Farnham Royal

    Google Scholar 

  • SAS Institute Inc (2010) JMP statistical and graphics guide, version 9. SAS Institute Inc, Cary

    Google Scholar 

  • Sellamuthu R, Liu GF, Ranganathan CB, Serraj R (2011) Genetic analysis and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a double haploid line population of rice (Oryza sativa L.). Field Crop Res 124:46–58

    Article  Google Scholar 

  • Shehzad T, Iwata H, Okuno K (2009a) Genome-wide association mapping of quantitative traits in sorghum (Sorghum bicolor L. Moench) by using multiple models. Breed Sci 59:217–227

    Article  CAS  Google Scholar 

  • Shehzad T, Okuizumi H, Kawase M, Okuno K (2009b) Development of SSR-based sorghum (Sorghum bicolor L. Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol 56:809–827

    Article  CAS  Google Scholar 

  • Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9:161–169

    Article  Google Scholar 

  • Stich B, Möhring JM, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  Google Scholar 

  • Subashri M, Robin S, Vinod KK, Rajeswari S, Mohanasundaram K, Raveendran TS (2009) Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs. Euphytica 166:291–305

    Article  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay-green trait in sorghum (Sorghum bicolor L. Moench) consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10

    Article  PubMed  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 3:286–289

    Article  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L. Moench). Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs HW, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Bucker ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 2:203–208

    Article  Google Scholar 

  • Yue B, Xiong L, Xue W, Xing YZ, Luo L, Xu C (2005) Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet 111:1127–1136

    Article  PubMed  Google Scholar 

  • Yue B, Xue W, Luo L, Xing Y (2008) Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.). J Genet Genomics 35:569–575

    Article  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:71–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Okuno.

Additional information

Shazia Sakhi and Tariq Shehzad contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakhi, S., Shehzad, T., Rehman, S. et al. Mapping the QTLs underlying drought stress at developmental stage of sorghum (Sorghum bicolor (L.) Moench) by association analysis. Euphytica 193, 433–450 (2013). https://doi.org/10.1007/s10681-013-0963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0963-6

Keywords

Navigation