Skip to main content
Log in

Pleiotropic effects of the elongated glume gene P1 on grain and spikelet shape-related traits in tetraploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Wheat grain size and shape are associated not only with yield but also with product and milling quality. A subspecies of cultivated tetraploid wheat, Triticum turgidum ssp. polonicum, is characterized by elongated glumes. To elucidate morphological effects of the subspecies differentiation-related gene, we conducted QTL analysis for grain and spikelet shape using a mapping population between two tetraploid wheat subspecies, polonicum and durum. P1, the gene controlling the elongated glumes, was located on chromosome 7A, and the polonicum-type allele acted in an incomplete dominance manner to express the elongated glume phenotype. The polonicum allele of the P1 locus significantly affected not only glume length but also grain shape, spike shape, awn length and seed fertility in tetraploid wheat. The elongated glume phenotype was correlated with an increase in spike length, grain length and grain weight, and with a decrease in fertility, grain number and awn length. Thus, the subspecies differentiation-related gene in subspecies polonicum dramatically affects grain shape accompanied by alteration of spikelet shape in tetraploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Gustafson JP, Lazo G, Chao S, Anderson OD, Linkiewicz AM, Dubcovsky J, Rota ML, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons KM, Steber C, McGuire PE, Qualset CO, Dvorak J (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi MF, Mouzeyar S (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot 16:5945–5955

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivar. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid mapping populations. Field Crop Sci 101:172–179

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  Google Scholar 

  • Elias EM, Steiger DK, Cantrell RG (1996) Evaluation of lines derived from wild emmer wheat chromosome substitutions. II. Agronomic traits. Crop Sci 36:228–233

    Article  Google Scholar 

  • Evers AD, Cox RI, Shaheedullah MZ, Withey RP (1990) Predicting milling extraction rate by image analysis of wheat grains. Asp Appl Biol 25:417–426

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rate: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    Article  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic frame work for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Goncharov NP (2011) Genus Triticum L. taxonomy: the present and the future. Plant Syst Evol 295:1–11

    Article  Google Scholar 

  • Hori K, Kobayashi T, Shimizu A, Sato K, Kawasaki S (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107:808–813

    Article  Google Scholar 

  • Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics 11:49–61

    Article  PubMed  CAS  Google Scholar 

  • Johnson E, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201

    Article  Google Scholar 

  • Koba T, Tsunewaki K (1978) Mapping of the s and Ch2 genes on chromosome 3D of common wheat. Wheat Inform Serv 45–46:18–20

    Google Scholar 

  • Kobayashi F, Takumi S, Handa H (2010) Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. Theor Appl Genet 121:629–641

    Article  PubMed  CAS  Google Scholar 

  • Kofler R, Schlötterer C, Lellry T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kosuge K, Watanabe N, Kuboyama T (2010) Recombination around the P locus for long glume phenotype in experimental introgression lines of Triticum aestivumTriticum polonicum. Genet Resour Crop Evol 57:611–618

    Article  Google Scholar 

  • Kosuge K, Watanabe N, Kuboyama T (2011) Comparative genetic mapping of homoeologous genes for the chlorina phenotype in the genus Triticum. Euphytica 179:257–263

    Article  Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Simons K, Iqbal MJ, de Jimenez MM, Bassi FM, Ghavami F, Al-Azzam O, Drader T, Wang Y, Luo MC, Gu YQ, Denton A, Lazo GR, Xu SS, Dvorak J, Kianian PMA, Kianian SF (2012) Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genoe progenitor Aegilops tauschii. BMC Genomics 13:597

    Article  PubMed  CAS  Google Scholar 

  • Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S, Stiller J, Edwards D (2012) WheatGenome.info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53:e2. doi:10.1093/pcp/pcr141

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29:43–52

    Article  CAS  Google Scholar 

  • Matsumura S (1950) Linkage studies in wheat. II. P-linkage group and the manifold effects of P gene. Jpn J Genet 25:111–118 (in Japanese with English abstract)

    Article  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Kajimura T, Ikeda MT, Takumi S (2012) Evidence from principal component analysis for improvement of grain shape- and spikelet morphology-related traits after hexaploid wheat speciation. Genes Genet Syst 87:299–310

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Sun D, Nevo E (2011a) Domestication evolution, genetics and genomics in wheat. Mol Breed 28:281–301

    Article  CAS  Google Scholar 

  • Peng J, Sun D, Nevo E (2011b) Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. Aust J Crop Sci 5:1127–1143

    Google Scholar 

  • Peng JH, Sun DF, Peng YL, Nevo E (2013) Gene discovery in Triticum dicoccoides, the direct progenitor of cultivated wheats. Cereal Res Commun. doi:10.1556/CRC.2012.0030

    Google Scholar 

  • Prashant R, Kadoo N, Desale C, Kore P, Dhaliwal HS, Chhuneja P, Gupta V (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56:432–439

    Article  CAS  Google Scholar 

  • Rao MVP (1977) Mapping of the sphaerococcum gene ‘s’ on chromosome 3D of wheat. Cereal Res Comm 5:15–17

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  PubMed  CAS  Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Sun X, Marza F, Ma H, Carver BF, Bai G (2010) Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet 120:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JM (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730

    Article  PubMed  CAS  Google Scholar 

  • Tsunewaki K, Koba T (1979) Production and genetic characterization of the co-isogenic lines of a common wheat Triticum aestivum cv. S-615 for ten major genes. Euphytica 28:579–592

    Article  Google Scholar 

  • Wang HJ, Huang XQ, Röder MS, Börner A (2002) Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica 123:287–293

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 2.5. Department of Statics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Watanabe N (1994) Near-isogenic lines of durum wheat: their development and plant characteristics. Euphytica 72:143–147

    Article  Google Scholar 

  • Watanabe N (1999) Genetic control of the long glume phenotype in tetraploid wheat by homoeologous chromosome. Euphytica 106:39–43

    Article  Google Scholar 

  • Watanabe N, Imamura I (2002) Genetic control of long glume phenotype in tetraploid wheat derived from Triticum petropavlovskyi Udacz. et Migusch. Euphytica 128:211–217

    Article  CAS  Google Scholar 

  • Watanabe N, Yotani Y, Furuta Y (1996) The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica 91:235–239

    Google Scholar 

  • Watanabe N, Sekiya T, Sugiyama K, Yamagishi Y, Imamura I (2002) Telosomic mapping of the homoeologous genes for the long glume phenotype in tetraploid wheat. Euphytica 128:129–134

    Article  CAS  Google Scholar 

  • Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Seeds of two tetraploid wheat accessions, KU-9894 and KU-9882, were supplied by the National BioResource Project-Wheat, Japan (http://www.shigen.nig.ac.jp/wheat/komugi/top/top.jsp). Seeds of LD222 and its NIL (ANW5A) were supplied by Dr. N. Watanabe. We are grateful to Dr. T. Kawahara of Kyoto University for valuable advice for the subspecies taxonomy. This work was financially supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for Scientific Research (B) No. 21380005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takumi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 59 kb)

Supplementary material 2 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, Y., Takumi, S. Pleiotropic effects of the elongated glume gene P1 on grain and spikelet shape-related traits in tetraploid wheat. Euphytica 194, 207–218 (2013). https://doi.org/10.1007/s10681-013-0916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0916-0

Keywords

Navigation