Skip to main content
Log in

Genome size variation in three Saccharum species

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Saccharum species are autopolyploids with ploidy level ranging from 5× to 16x, and are considered the most complex genomes among crop plants. In present study, the genome sizes of 28 Saccharum spontaneum accessions, 15 Saccharum officinarum accessions, 28 Saccharum robustum accessions, and 12 Saccharum hybrids spp. were analyzed using flow cytometry. The estimated genome sizes of S. officinarum accessions ranged from 7.50 to 8.55 Gb with an average size of 7.88 Gb. In S. robustum, the estimated genome sizes ranged from 7.65 to 11.78, reflecting the variation of ploidy level. In S. spontaneum, the estimated genome sizes varied widely, with a range from 3.36 to 12.64 Gb, also due to variation of ploidy level. The average monoploid genome size of S. officinarum was 985 Mb, and that of S. spontaneum was 843 Mb. The results also showed that genome sizes were correlated with chromosome numbers, and based which, that the unknown chromosome numbers of some accessions could be predicted. The estimated genome sizes of Saccharum germplasm also helped identify some mislabeled accessions and yielded information critical for sugarcane breeding and genome sequencing programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Brandes E (1956) Origin, dispersal and use in breeding of the Melanesian garden sugarcane and their derivatives, Saccharum officinarum L. Proc Int Soc Sugar Cane Technol 9:709–750

    Google Scholar 

  • Burnquist WL, Sorrells ME, Tanksley S (1992) Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc Int Soc Sugar Cane Technol 21:355–365

    Google Scholar 

  • Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES (2010) Genome-size variation in Switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome 3:130–141

    Article  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugar Cane Technol 24:556–559

    Google Scholar 

  • D’Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugar Cane 1:12–15

    Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao PS, Berding N (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharun spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Google Scholar 

  • D’Hont A, Lu YH, Feldmann P, Glaszmann JC (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262

    Article  PubMed  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution in sugarcane. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier Press, Amsterdam, pp 7–84

    Google Scholar 

  • Dolezel J (1997) Applications of flow cytometry for the study of plant genomes. J Appl Genet 38:285–302

    Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size in trout and human. Cytom A 51A:127–128

    Article  Google Scholar 

  • Edme SJ, Comstock JC, Miller JD, Tai PYP (2005) Determination of DNA content and genome size in sugarcane. J Am Soc Sugar Cane Technol 25:1–16

    Google Scholar 

  • Grivet L, Glaszmann JC, D’Hont A (2006) Molecular evidence of sugarcane evolution and domestication. In: Motley TJ (ed) Darwin’s harvest: new approaches to the origins, evolution and conservation of crops. Columbia University Press, New York, pp 49–66

    Google Scholar 

  • Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Huff DR, Palazzo AJ (1998) Fine fescue species determination by flow cytometry. Crop Sci 38:445–450

    Article  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Jannoo N, Grivet L, Chatret N, Garsmeur O, Glaszman JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploidy genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  • Johnson PG, Riordan T, Arumuganathan K (1998) Ploidy level determinations in buffalo grass clones and populations. Crop Sci 38:478–482

    Article  Google Scholar 

  • Lam E, Shine J Jr, Da SJ, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho MC, Glynn N, Helsel Z, Ma J, Richard F Jr, Souza GM, Ming R (2009) Improving sugarcane for biofuel: engineering for an even better feedstock. Glob Chang Biol Bioenergy 1:251–255

    Article  CAS  Google Scholar 

  • Lu YH, D’Hont A, Walker DIT, Rao PS, Feldmann P, Glaszmann JC (1994) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–8

    Article  Google Scholar 

  • Lysak MA, Dolezel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 51:123–132

    Google Scholar 

  • Moore PH, Nagai C, Fitch M (1989) Production and evaluation of sugarcane hybrids. International society of sugarcane technologists XX congress, proceedings, SaoPaulo, Oct 19–20, vol 2, pp 599–607

  • Nair NV, Nair S, Sreenivasan TV, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Resour Crop Evol 46:73–79

    Article  Google Scholar 

  • Palomino G, Dolezel J, Mendez I, Rubluo A (2003) Nuclear genome size analysis of Agave tequilana Weber. Caryologia 56:37–46

    Google Scholar 

  • Pan Y-B, Burner DM, Legendre BL, Grisham MP, White WH (2004) An assessment of the genetic diversity within a collection of Saccharum spontaneum L. with RAPD. Genet Res Crop Evol 51(8):895–903

    Article  CAS  Google Scholar 

  • Rao D (1983) Catalogue on sugarcane genetic resources. I. Saccharum spontaneum L. Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore

    Google Scholar 

  • Schenck S, Crepeau MW, Wu KK, Moore PH, Yu Q, Ming R (2004) Genetic diversity and relationships in native Hawaiian Saccharum officinarum sugarcane. J Hered 95:327–331

    Article  PubMed  CAS  Google Scholar 

  • Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugar cane. Genome 46:394–403

    Article  PubMed  CAS  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Resour Crop Evol 53:831–842

    Article  CAS  Google Scholar 

  • Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, Henry R, Ming R, Potier B, Sluys MV, Vincentz M, Paterson AH (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4:145–156. doi:10.1007/s12042-011-9079-0

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier Press, New York, pp 211–253

    Google Scholar 

  • Tompkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the International Consortium for Sugarcane Biotechnology and the Consortium for Plant Biotechnology Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Nagai, C., Yu, Q. et al. Genome size variation in three Saccharum species. Euphytica 185, 511–519 (2012). https://doi.org/10.1007/s10681-012-0664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0664-6

Keywords

Navigation