Skip to main content
Log in

Sequence variation in the barley genes encoding sucrose synthase I and sucrose phosphate synthase II, and its association with variation in grain traits and malting quality

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sequence diversity in the two barley (Hordeum vulgare L.) genes encoding sucrose synthase I (SSI) and sucrose phosphate synthase II (SPSII), both of which are involved in sucrose accumulation and grain filling, was studied by partial resequencing of eight reference genotypes and SNP analysis by pyrosequencing in a panel of 94 spring and 96 winter European barley varieties. The resequencing was based on two adjacent SSI fragments of size 880 and 820 bp, and a 2,322 bp SPSII fragment. In the SSI gene, 26 SNPs were present in the larger fragment, and 25 in the smaller one, and 11 of these were exploited to develop high-throughput SNP assays used for haplotype analysis. An association analysis based on either a general or a mixed linear model suggested that the predominant three haplotypes influenced certain components of both kernel and malting quality. However, the level of phenotype/haplotype association shown with the SPSII gene was rather low. SNP variation of SSI was used to map the locus to chromosome 7H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from western Canadian two-row barley cooperative trials. Crop Sci 50:1649–1663

    Article  Google Scholar 

  • Blake NK, Sherman JD, Dvorak J, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  PubMed  CAS  Google Scholar 

  • Castleden CK, Aoki N, Gillespie VJ, Macrae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol 135:1753–1764

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, White J, Leigh F, Lea V, Chiapparino E, Laurie D, Mackay I, Powell W, O’Sullivan D (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16

    Article  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • de Ilarduya O, Vicente-Carbajosa J, de la Hoz PS, Carbonero P (1993) Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ssl and Ss2. FEBS Lett 320:177–181

    Article  Google Scholar 

  • de la Hoz PS, Vicente-Carbajosa J, Mena M, Carbonero P (1992) Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn.1) and 2H–evidence for a gene translocation. FEBS 310:46–50

    Article  Google Scholar 

  • Echt CS, Chourey PS (1985) A comparison of two sucrose synthetase isozymes from normal and shrunken-1 maize. Plant Physiol 79:530–536

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Guerin J, Carbonero P (1997) The spatial distribution of sucrose synthase isozymes in barley. Plant Physiol 114:55–62

    PubMed  CAS  Google Scholar 

  • Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Haseneyer G, Stracke S, Piepho HP, Sauer S, Geiger HH, Graner A (2010) DNA polymorphisms and haplotpype patterns of transcription factors involved in barley endosperm. BMC Plant Biol 10:5

    Article  PubMed  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Kosambi D (1944) The calculation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Kraakman ATW, Martinez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58

    Article  CAS  Google Scholar 

  • Kuenne C, Lange M, Funke T, Miehe H, Thiel T, Grosse I, Scholz U (2005) CR-EST: a resource for crop ESTs. Nucleic Acids Res 33:D619–D621

    Article  CAS  Google Scholar 

  • Lapitan NLV, Hess A, Cooper B, Botha A-M, Badillo D, Iyer H, Menert J, Close T, Wright L, Hanning G, Tahir M, Lawrence C (2009) Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.). Theor Appl Genet 118:937–952

    Article  PubMed  CAS  Google Scholar 

  • Lutfiyya LL, Xu NF, D’Ordine RL, Morrell JA, Miller PW, Duff SMG (2007) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J Plant Physiol 164:923–933

    Article  PubMed  CAS  Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in worldwide cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6

    Google Scholar 

  • Marana C, Garcia-Olmedo F, Carbonero P (1990) Different expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172

    Article  PubMed  CAS  Google Scholar 

  • Matthies IE, Weise S, Förster J, Röder MS (2009a) Association mapping and marker development of the candidate genes (1→3),(1→4)-β-d-Glucan-4-glucanohydrolase and (1→4)-β-Xylan-endohydrolase 1 for malting quality in barley. Euphytica 170:109–122

    Article  CAS  Google Scholar 

  • Matthies IE, Weise S, Röder MS (2009b) Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed 23:139–152

    Article  CAS  Google Scholar 

  • Matthies IE, Weise S, Röder MS (2010) Assoziationskartierung in Gerste–Ein genomweiter und Kandidatengen-Ansatz. Bericht über die 60. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, HBLFA Raumberg, Gumpenstein, 24. bis 26. 11. 2009, 91–96

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Nguyen-Quoc B, Krivitzky M, Huber SC, Lecharny A (1990) Sucrose synthase in developing maize leaves. Plant Physiol 94:516–523

    Article  PubMed  CAS  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Potokina E, Sreenivasulu N, Altschmied L, Michalek W, Graner A (2002) Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct Integr Genomics 2:28–39

    Article  PubMed  CAS  Google Scholar 

  • Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA arrays based on expression patterns in barley (Hordeum vulgare L.). Mol Breed 14:153–170

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Nat Acad Sci USA 103:18656–18661

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Akrawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totawa, pp 365–386

    Google Scholar 

  • Sato K, Shin I, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y (2009) Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res 16:81–89

    Article  PubMed  Google Scholar 

  • Schlueter SD, Dong QF, Brendel V (2003) GeneSeqer@PlantGDB: gene structure prediction in plant genomes. Nucleic Acids Res 31:3597–3600

    Article  PubMed  CAS  Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    Google Scholar 

  • Sharma S, Sreenivasulu N, Harshavardhan VT, Seiler C, Sharma S, Zaynali Nezhad K, Akhunov E, Sehgal SK, Röder MS (2010) Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC Plant Biol 10:134

    Article  PubMed  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Presterl T, Stein N, Perovic D, Ordon F, Graner A (2007) Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus containing Bymovirus resistance in barley. Genetics 175:805–817

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273

    Article  PubMed  CAS  Google Scholar 

  • Szücs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140

    Article  Google Scholar 

  • van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Wang AY, Yu WP, Juang RH, Huang JW, Sung HY, Su JC (1992) Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA. Plant Mol Biol 18:1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Weise S, Scholz U, Röder MS, Matthies IE (2009) A comprehensive database of malting quality traits in brewing barley. Barley Genet Newslett 39:1–4

    Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962

    Article  PubMed  CAS  Google Scholar 

  • Worch S, Kalladan R, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa T, Kiribuchi-Otobe C, Yoshida H (2001) An alanine to threonine change in the Wx-D1 protein reduces GBSS I activity in waxy mutant wheat. Euphytica 121:209–214

    Article  CAS  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang HN, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The SSI study was carried out within the GABI project “GENOBAR” (Grant-No. 0315066C), financed by the BMBF. The SPSII study was supported by an Alexander von Humboldt Research Fellowship awarded to Shailendra Sharma. The authors thank Susanne König for resequencing and Ellen Weiß for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Sharma.

Additional information

Inge E. Matthies and Shailendra Sharma contributed equally to this publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthies, I.E., Sharma, S., Weise, S. et al. Sequence variation in the barley genes encoding sucrose synthase I and sucrose phosphate synthase II, and its association with variation in grain traits and malting quality. Euphytica 184, 73–83 (2012). https://doi.org/10.1007/s10681-011-0563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0563-2

Keywords

Navigation