Skip to main content
Log in

Fine mapping of the quantitative trait locus qFLL9 controlling flag leaf length in rice

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The morphological traits of leaves, such as size and shape, are major determinants of plant architecture and strongly affect high yield performance. To understand the molecular mechanism governing flag leaf length, we analyzed quantitative trait loci (QTLs) affecting flag leaf length by employing 176 F2 individuals derived from a cross between two japonica rice cultivars: Shennong265 (SN265) and Lijiangxintuanheigu (LTH). We identified qFLL3, qFLL6 and qFLL9 from this F2 population. Flag leaf length was increased by SN265 alleles at qFLL3 and qFLL6, but by LTH allele at qFLL9. In order to eliminate the influence of qFLL3 and qFLL6, one single residual heterozygous plant for qFLL9 region, RH-qFLL9, was selected based on the genotypes of 114 simple sequence repeat (SSR) markers and used as the parent of a segregating population. Using this segregating population of 889 plants, this region was narrowed down to an interval between RM24423 and RM24434. According to the rice annotation project database, there are 17 predicted genes in the 198-kb target region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658

    CAS  PubMed  Google Scholar 

  • Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed Sci 55:65–73

    Article  CAS  Google Scholar 

  • Foyer CH (1987) The basis for source-sink interaction in leaves. Plant Physiol Biochem 25:649–657

    CAS  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom 279:499–507

    Article  CAS  Google Scholar 

  • Gladun IV, Karpov EA (1993a) Distribution of assimilates from the flag leaf of rice during the reproductive period of development. Russ J Plant Physiol 40:215–219

    Google Scholar 

  • Gladun IV, Karpov EA (1993b) Production and partitioning of assimilates between the panicle and vegetative organs of rice after flowering. Russ J Plant Physiol 40:728–773

    CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    Article  CAS  PubMed  Google Scholar 

  • Huang CF, Zhang GQ (2003) Development of position-specific microsatellite markers and molecular mapping of insect resistant genes in rice (Oryza sativa L.). Mol Plant Breed 1:572–574

    Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  PubMed  Google Scholar 

  • Kholupenco IP, Burundukova OL, Zhemchugova VP, Voronkova NM, Chernoded GK (1996) Source-sink relations in Far-Eastern rice cultivars as related to their productivity. Russ J Plant Physiol 43:141–148

    Google Scholar 

  • Kobayashi S, Fukuta Y, Morita S, Sato T, Osaki M, Khush GS (2003) Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.). Breed Sci 53(3):255–262

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–182

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4:419–426

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    Article  CAS  PubMed  Google Scholar 

  • Panaud O, Chen X, McCouch SD (1996) Development of micro-satellite marker and characterization of sample sequence lengthen polymorphism (SSLP) in rice (Oryza sativa L). Mol Gen Genet 252:597–607

    CAS  PubMed  Google Scholar 

  • Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice Narrow leaf 1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790

    Article  CAS  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–5142

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing nearisogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, and Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Watanabe H, Abe K, Emori Y, Hosoyama H, Arai S (1991) Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem 266:16897–16902

    CAS  PubMed  Google Scholar 

  • Woo YM, Park HJ, Su’udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Mori H, Yamaki S (1999) Identification and cDNA cloning of a protein abundantly expressed during apple fruit development. Plant Cell Physiol 40:198–204

    CAS  PubMed  Google Scholar 

  • Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110:634–639

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci U S A 91:8675–8679

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (30871468) and the National 973 Program of China (2009CB126007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S., Zhang, X., Wang, J. et al. Fine mapping of the quantitative trait locus qFLL9 controlling flag leaf length in rice. Euphytica 176, 341–347 (2010). https://doi.org/10.1007/s10681-010-0209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0209-9

Keywords

Navigation