Skip to main content
Log in

Locus-specific microsatellite markers in common bean (Phaseolus vulgaris L.): isolation and characterization

  • Published:
Euphytica Aims and scope Submit manuscript

An Erratum to this article was published on 31 January 2008

An Erratum to this article was published on 31 January 2008

Abstract

This study aimed at the development of microsatellite markers for Phaseolus vulgaris L. by two techniques: hybridization-based detection, and transfer of microsatellite markers developed for chickpea to the common bean. Small-insert genomic libraries of common bean were screened for simple sequence repeat (SSR)-containing fragments with a set of microsatellite-specific oligonucleotide probes. Twenty-five (GA)10 positive clones detected by a dinucleotide repeat probe were selected for sequencing. Sixteen of 18 primer pairs, complementary to the SSR-flanking regions and tested in eight P. vulgaris L. accessions, are polymorphic at an intra-specific level. Mendelian inheritance of the sequence-tagged microsatellite site (STMS) markers was demonstrated using a set of recombinant inbred lines (RILs) and their parents. A total of 46 chickpea STMS markers of 447 different primer combinations amplified loci in the genome of common bean. Sequencing of amplified products from Phaseolus with these primer combinations demonstrated that the sequence of microsatellite marker TA 176s proved to be significantly similar to transcription factor SCOF1 of soy bean, controlling the response to cold stress, and also to transcription factor zinc finger protein (a Krüppel-like zinc finger protein, or TFIIIA), coordinating the reaction to osmotic stress in Medicago truncatula. Sequence analysis of this site in the two common bean parental lines BAT 477 and DOR 364 revealed that the sequence of BAT 477 was 5 bp longer than the corresponding sequence of DOR 364. Amplification of this fragment in six RILs of common bean detected the existence of sequence polymorphisms between the different lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SSR:

Simple sequence repeat

bp:

Base pairs

PCR:

Polymerase chain reaction

STMS:

Sequence-tagged microsatellite site marker

References

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore, DD, Seidment JG, Struhl K (1990) In: Current protocols in molecular biology, vol 3, p. A3D.1, Wiley, New York

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Chavarriaga-Aguirre P, Maya MM, Bonierbale MW, Kresovich S, Fregene M, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance, and variability. Theor Appl Genet 97:493–501

    Article  CAS  Google Scholar 

  • Choumane W, Winter P, Weigand F, Kahl G (2000) Conservation and variability of sequence-tagged microsatellite sites from chickpea (Cicer arietinum) within the genus Cicer. Theor Appl Genet 101:269–278

    Article  CAS  Google Scholar 

  • Close TJ, Wanamaker S (2003) HarvEST: Triticeae Software. http://www.harvest.ucr.edu

  • Condit R, Hubbell SP (1991) Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34:66–71

    PubMed  CAS  Google Scholar 

  • Debouck D (1991) Systematics and morphology. In: van Schoonhoven A, Voysest O (eds) Common beans: research for primary crop improvement. Redwood Press Ltd, Melksham, pp 55–118

    Google Scholar 

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Kazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature (London) 380:152–154

    Article  CAS  Google Scholar 

  • Echt CS, May-Marquardt P (1997) Survey of microsatellite DNA in pine. Genome 40:9–17

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43

    Article  CAS  Google Scholar 

  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris)-isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Herendeen PS, Crepet WL, Dilcher DL (1992). The fossil history of the Leguminosae: phylogenetic and biogeographic implications. In: Herendeen PS, Dilcher DL (eds) Advances in legume systematics, Part 4. Royal Botanic Gardens, Kew, pp 303–316

    Google Scholar 

  • Herron BJ, Silva GH, Flaherty L (1998) Putative assignment of ESTs to the genetic map by use of the SSLP database. Mamm Genome 9:1072–1074

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers of chickpea (Cicer arietinum L.). Genome 42:210–217

    Article  PubMed  Google Scholar 

  • Innan H, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146:1441–1452

    PubMed  CAS  Google Scholar 

  • Jarne P, Viard P, Delay B, Cuny G (1994) Variable microsatellites in the highly selfing snail Bulinus truncates (Basommatophora: Planorobidae). Mol Ecol 3:527–528

    Article  PubMed  CAS  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  PubMed  CAS  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  CAS  Google Scholar 

  • Maguire TL, Edwards KJ, Saenger P, Henry R (2000). Characterization and analysis of microsatellite loci in a mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor Appl Genet 101:279–285

    Article  CAS  Google Scholar 

  • Mba REC, Stephenson P, Edwards KJ, Melzer S, Nkumbira J, Gullberg U, Apel A, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    Article  CAS  Google Scholar 

  • Michaels SD, John MC, Amasino RM (1994) Removal of polysaccharides from plant DNA by ethanol precipitation. Biotechniques 17:274–276

    PubMed  CAS  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  • Oram PA, Agcaoili M (1994) Current status and future trends in supply and demand of cool season food legumes. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 3–49

    Google Scholar 

  • Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11:275–286

    Article  CAS  Google Scholar 

  • Panaud O, Chen X, McCouch SR (1995) Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome 38:1170–1176

    PubMed  CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48

    Article  CAS  Google Scholar 

  • Rossetto M, McLauchlan A, Harriss FCL, Henry RJ, Bavers-tock PR, Lee LS, Maguire TL, Edwards KJ (1999) Abundance and polymorphism of microsatellite markers in the tea tree (Melaleuca alternifolia, Myrtaceae). Theor Appl Genet 98:1091–1098

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. PNAS 91:5466–5470

    Article  PubMed  CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Sun HS, Kirkpatrick BW (1996) Exploiting dinucleotide microsatellites conserved among mammalian species. Mamm Genome 7:128–132

    Article  PubMed  CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryote genomes. Nucleic Acids Res 12:4127–4137

    Article  PubMed  CAS  Google Scholar 

  • Tohme J, Gonzalez DO, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Udupa SM, Robertson LD, Weigand F, Baum M, Kahl G (1999). Allelic variation at (TAA) n microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genet 261:354–363

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA)n .(dG-dT)n polymorphisms. Genomics 7:524–530

    Article  PubMed  CAS  Google Scholar 

  • Weber JL, May P (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    PubMed  CAS  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999). Characterization and mapping of sequence tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Ma QH (2004) Medicago truncatula Mt-ZFP1 encoding a root enhanced zinc finger protein is regulated by cytokinin, abscisic acid and jasmonate, but not cold. DNA Seq 15:104–109

    PubMed  CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42:27–34

    Article  CAS  Google Scholar 

  • Zurawski G, Clegg MT (1993) rbcL sequence data and phylogenic reconstruction in seed plants: foreword. Ann Mo Bot Gard 80:523–525

    Google Scholar 

Download references

Acknowledgements

Research of the first author was supported by German Academic Exchange Service (DAAD, Bad Godesberg, Germany) and International Atomic Energy Agency (IAEA, Vienna, Austria), research grant No. 10974/R4. This work was carried out at GenXPro GmbH in the Frankfurt Innovation Center Biotechnology (FIZ), Frankfurt am Main, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Horres.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10681-008-9648-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

L’taief, B., Horres, R., Jungmann, R. et al. Locus-specific microsatellite markers in common bean (Phaseolus vulgaris L.): isolation and characterization. Euphytica 162, 301–310 (2008). https://doi.org/10.1007/s10681-007-9577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9577-1

Keywords

Navigation