Skip to main content
Log in

Development of Microsatellite Markers in Tung Tree (Vernicia fordii) Using Cassava Genomic Sequences

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Tung tree, Vernicia fordii, is a native oil-bearing woody plant of China. Oil extracted from the fruit is an important industrial and biodiesel feedstock. Microsatellite (simple-sequence repeat (SSR)) markers are effective in germplasm evaluation and marker-assisted breeding of plants. The objective of this study was to develop SSR markers in tung tree using cassava genomic sequences and test the effectiveness of the interspecific transferable SSR markers. According to the principle of comparative genomics, SSR markers were designed based on cassava genomic sequences and tested in tung tree and other Euphorbiaceae plant species. Among 255 cassava SSR markers, 104 (41 %) could effectively amplify DNA of tung tree, and a large portion of these transferable SSR markers could work well in other Euphorbiaceae species, Vernicia montana (98 %), castor bean (92 %), and Jatropha curcas (88 %). Genotyping a set of 16 tung tree accessions using the 104 transferable SSRs, a total of 437 alleles were obtained, 162 of which were polymorphic, and the Shannon information index varied from 0.000 to 0.560 with a mean of 0.139. A phylogenetic tree unambiguously distinguished the 32 accessions of the abovementioned five Euphorbiaceae species. Using cassava genomics resources is an effective approach to develop SSR markers for tung tree when its genome sequence is not available. The developed SSR markers should facilitate germplasm evaluation and other molecular-level investigations in tung tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    Article  PubMed Central  PubMed  Google Scholar 

  • Carvalho CR, Clarindo WR, Praca MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    Article  CAS  Google Scholar 

  • Castillo A, Budak H, Varshney RK, Dorado G, Graner A, Hernandez P (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the ricin-producing oilseed castor bean. Nat Biotechnol 28:951–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YH, Chen JH, Luo YM (2012) Complementary biodiesel combination from tung and medium-chain fatty acid oils. Renew Energy 44:305–310

    Article  CAS  Google Scholar 

  • Gilbert LB, Chae L, Kasuga T, Taylor JW (2011) Array comparative genomic hybridizations: assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics 12:456–472

    Article  PubMed Central  PubMed  Google Scholar 

  • Heckenberger M, Bohn M, Ziegle JS, Joe LK, Hauser JD, Hutton M, Melchinger AE (2002) Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties. I. Genetic and technical sources of variation in SSR data. Mol Breed 10:181–191

    Article  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Karan M, Evans DS, Reilly D, Schulte K, Wright C, Innes D, Holton TA, Nikles DG, Dickinson GR (2012) Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity. Mol Ecol Resour 12:344–353

    Article  CAS  PubMed  Google Scholar 

  • Koppolu R, Upadhyaya HD, Dwivedi SL, Hoisington DA, Varshney RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol 10:15–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Liu JL, Guo ZT, Sun DF, Yin ZL, Shi YG (2008) Karyotype analysis of tung tree varieties, Guitong no. 2 and Hubei Jinsi Youtong. Nonwood For Res 26:53–57

    CAS  Google Scholar 

  • Liu F, Wang F, Duan D (2012) EST-SSR markers derived from Laminaria digitata and its transferable application in Saccharina japonica. J Appl Phycol 24:501–505

    Article  CAS  Google Scholar 

  • Mba REC, Stephensen P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okogbenin E, Marin J, Fregene M (2006) A SSR-based molecular genetic map of cassava. Euphytica 147:433–440

    Article  CAS  Google Scholar 

  • Pan Y, Pan L, Chen L, Zhang LL, Nevo E, Peng JH (2013) Development of microsatellite markers in the oil-producing species Vernicia fordii (Euphorbiaceae), a potential biodiesel feedstock. Appl Plant Sci 1:1–4

    CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetics software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Roder MS, Ronin YI, Li YC, Nevo E (2000a) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

  • Peng JH, Fahima T, Roder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000b) High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:109–210

    Article  Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Grama A, Nevo E (2000c) Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its markers-assisted selection in the F2 generation in wild emmer wheat. New Phytol 146:141–154

    Article  CAS  Google Scholar 

  • Peng JH, Ronin YI, Fahima T, Roder MS, Li YC, Nevo E, Korol AB (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci U S A 100:2489–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potter GF (1959) The domestic tung industry. I. Production and improvement of the tung tree. Econ Bot 13:328–342

    Article  Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raheman H, Mondal S (2012) Biogas production potential of Jatropha seed cake. Biomass Bioenergy 37:25–35

    Article  CAS  Google Scholar 

  • Raji A, Anderson J, Kolade O, Ugwu C, Dixon A, Ingelbrecht I (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:118–128

  • Rohlf FJ (1998) NTSYS-pc Numerical taxonomy and multivariate analysis system. In Version 2.02, Exeter Publ, Setauket, New York

  • Shang Q, Jiang W, Lu H, Liang B (2010) Properties of tung oil biodiesel and its blends with 0# diesel. Bioresour Technol 101:826–828

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  Google Scholar 

  • Sokal R, Sneath PA (1967) Principles of numerical taxonomy. Freeman, San Francisco, CA

  • The Cassava Genome Consortium (2014) Cassava genome from a wild ancestor to cultivated varieties. Nature Communications (in press)

  • Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:42–49

  • Xu W, Yang Q, Huai H, Liu A (2012) Development of EST-SSR markers and investigation of genetic relatedness in tung tree. Tree Genet Genome 8:933–940

    Article  Google Scholar 

  • Yeh FC, Yang RC (2000) Popgene version 1.32. University of Alberta and Center for International Research. http://www.ualberta.ca/*fyeh/

  • You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput Web application for PCR and sequencing primer design. BMC Bioinforma 9:253–265

    Article  Google Scholar 

  • Zhang LL, Dai LJ, Gou JB, Peng JH (2013a) An effective protocol to solve the problem in genomic DNA isolation of tung tree. J Plant Biochem Biot 22:492–497

    Article  CAS  Google Scholar 

  • Zhang LL, Wang B, Pan L, Peng JH (2013b) Recycling isolation of plant DNA, a novel method. J Genet Genomic 40:45–54

    Article  Google Scholar 

  • Zhao H, Yu JY, You FM, Luo MC, Peng JH (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J Integr Plant Biol 53:232–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) grant nos. 31030055 and 30870233, Chinese Academy of Sciences under the Important Directional Program of Knowledge Innovation Project grant no. KSCX2-YW-Z-0722. We thank Dr. Wenquan Wang at the Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, China, for providing leaf tissues of cassava; Dr. Liu Aizhong at the Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303, Menglun, Yunnan, China, for providing leaf tissue of castor bean; and Dr. Wu Guojiang at the South China Botanical Garden, Chinese Acedemy of Sciences, 510650, Guangzhou, Guangdong, China, for providing leaf tissues of J. curcas. We sincerely thank the editors and two anonymous reviewers for their suggestion and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

(DOC 331 kb)

Supplemental Fig. 2

(DOC 4237 kb)

Supplemental Table 1

(DOC 239 kb)

Supplemental Table 2

(XLS 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Luo, M., You, F.M. et al. Development of Microsatellite Markers in Tung Tree (Vernicia fordii) Using Cassava Genomic Sequences. Plant Mol Biol Rep 33, 893–904 (2015). https://doi.org/10.1007/s11105-014-0804-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0804-3

Keywords

Navigation