Skip to main content
Log in

Diversity, genetic structure, distinctness and agronomic value of Italian lucerne (Medicago sativaL.) landraces

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Eleven landraces belonging to the seven commercial ecotypes of northern Italy, and seven elite varieties, were evaluated with the aims of: (i) comparing landrace and variety germplasm for dry weight (DW, recorded across three harvests spanning over two years) and morphophysiological characteristics; (ii) estimating among-population (s A 2) and within-population (s W 2) genetic variances of landrace and variety germplasms; (iii) investigating the interrelationships among traits at the plant and the population levels; (iv) exploring patterns of phenotypic diversity, and the relationships between diversity and environmental variables at landrace collecting sites; and (v) assessing the distinctness of ecotypes. Some 256 or 512 genotypes per landrace, and 128 genotypes per variety, were grown in dense stand in an unreplicated design together with a replicated clone. Compared with varieties, landrace material showed higher total DW (+9%) and DW at the last harvest (+43%), lower (2.5-fold) summer mortality and autumn dormancy (P< 0.01), and similar winter mortality. Landraces exhibited a greater s W 2value than varieties for all traits except autumn dormancy and number of florets per inflorescence (P< 0.01), with s W 2always exceeding s A 2(P< 0.01). The ratio of s W 2to s A 2averaged 23.1 for landraces and 6.5 for varieties across eight traits. Frequency of mowing at collecting sites was associated with higher total DW, better persistence, lower summer and winter mortality, larger leaflets and more stems per plant (r≥ 0.66, P< 0.05). Cluster analysis showed that landraces geographically close or belonging to the same commercial ecotype tended to greater similarity. However, one landrace that evolved under very frequent mowing differed greatly from other landraces of the same ecotype. Based on discriminant analysis, two ecotypes may be sufficiently distinct for registration in a sui generissystem, even though they may not meet the criteria for registration under a homegenity requirement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afifi, A.A. & V. Clark, 1984. Computer-Aided Multivariate Analysis. Lifetime Learning, London.

    Google Scholar 

  • Annicchiarico, P., 2005. A low-cost procedure for multi-purpose, large-scale field evaluation of forage crop genetic resources. Euphytica 140: 223–229.

    Article  Google Scholar 

  • Annicchiarico, P. & E. Piano, 1995. Variation within and among Ladino white clover ecotypes for agronomic traits. Euphytica 86: 135–142.

    Article  Google Scholar 

  • Annicchiarico, P. & E. Piano, 2005. Use of artificial environments to reproduce and exploit genotype × location interaction for lucerne in northern Italy. Theor Appl Genet 110: 219–227.

    Article  PubMed  CAS  Google Scholar 

  • Avice, J.C., A. Ourry, G. Lemaire, J.J. Volenec & J. Boucaud, 1997. Root protein and vegetative storage protein are key organic nutrients for alfalfa shoot regrowth. Crop Sci 37: 1187–1193.

    Article  CAS  Google Scholar 

  • Barnes, D.K., 1972. A System for Visually Classifying Alfalfa Flower Color. Agriculture Handbook No. 424. U.S. Dep. Agric., Washington.

    Google Scholar 

  • Barnes, D.K., D.M. Smith, L.R. Teuber, M.A. Peterson & M.H. McCaslin, 1995. Fall dormancy. In: C.C. Fox, R. Berberet, F.A. Gray, C.R. Grau, D.L. Jessen & M.A. Peterson (Eds.), Standard Tests to Characterize Alfalfa Cultivars, Third Edition, p. A-1. NAAIC, Beltsville.

    Google Scholar 

  • Bolaños-Aguilar, E.D., C. Huyghe, B. Julier & C. Ecalle, 2000. Genetic variation for seed yield and its components in alfalfa (Medicago sativa L.) populations. Agronomie 20: 333–345.

    Article  Google Scholar 

  • Brown, A.H.D. & J.J. Burdon, 1987. Mating systems and colonizing success in plants. In: A.J. Gray, M.J. Crawley & P.J. Edwards (Eds), Colonization, Succession and Stability, pp. 115–131. Blackwell, Oxford.

    Google Scholar 

  • Brunetti, A., G. Dal Monte & L. Perini, 1993. Indici Agroclimatici – Probabilità di Gelate. UCEA, Rome.

    Google Scholar 

  • Columella, G.M.L., 1846. De Re Rustica. Del Bene, Venezia.

    Google Scholar 

  • Crossa, J., I.H. DeLacy & S. Taba, 1995. The use of multivariate methods in developing a core collection. In: T. Hodgkin, A.H.D. Brown, T.J.L. van Hintum & E.A.V. Morales (Eds), Core Collections of Plant Genetic Resources, pp. 77–92. J. Wiley & Sons, Chichester.

    Google Scholar 

  • Estill, K., R.H. Delaney, R.L. Ditterline & W.K. Smith, 1993. Water relations and productivity of alfalfa populations divergently selected for leaflet size. Field Crops Res 33: 423–434.

    Article  Google Scholar 

  • Falcinelli, M., L. Russi, V. Negri & F. Veronesi, 1994. Variation within improved cultivars and landraces of lucerne in Central Italy. Euphytica 77: 199–203.

    Article  Google Scholar 

  • Frankel, O.H., 1989. Principles and strategies of evaluation. In: A.H.D. Brown, D.R. Mashall & J.T. Williams (Eds.), The Use of Plant Genetic Resources, pp. 245–259. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Frankel, O.H. & J.G. Hawkes (Eds.), 1975. Crop Genetic Resources for Today and Tomorrow. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Hill, R.R., J.S. Shenk & R.F. Barnes, 1988. Breeding for yield and quality. In: A.A. Hanson, D.K. Barnes & R.R. Hill (Eds.), Alfalfa and Alfalfa Improvement, pp. 809–825. ASA, CSSA, SSSA Publishers, Madison.

    Google Scholar 

  • Huyghe, C., 2003. Les fourrages et la production de protéines. In: Actes des Journées AFPF, pp. 17–32. AFPF, Paris.

    Google Scholar 

  • Julier, B., C. Huyghe & C. Ecalle, 2000. Within- and among-cultivar genetic variation in alfalfa: Forage quality, morphology, and yield. Crop Sci 40: 365–369.

    Article  Google Scholar 

  • Kalu, B.A. & G.W. Fick, 1981. Quantifying morphological development on alfalfa for studies of herbage quality. Crop Sci 21: 267–271.

    Article  Google Scholar 

  • Leskien, D. & M. Flitner, 1997. Intellectual Property Rights and Plant Genetic Resources: Options for a Sui Generis system. Issues in Genetic Resources No. 6. IPGRI, Rome.

    Google Scholar 

  • Loch, D.S., 1998. Plant breeders' rights. 1. Background, technical aspects and current trends. J Appl Seed Prod 16: 41–48.

    Google Scholar 

  • Melton, B., J.B. Moutray & J.H. Bouton, 1988. Geographic adaptation and cultivar selection. In: A.A. Hanson, D.K. Barnes & R.R. Hill (Eds.), Alfalfa and Alfalfa Improvement, pp. 595–620. ASA, CSSA, SSSA Publishers, Madison.

    Google Scholar 

  • Prosperi, J.M., P. Guy, G. Genier & M. Angevain, 1995. Les luzernes ou le genre Medicago. In: J.M. Prosperi, P. Guy & F. Balfourier (Eds.), Ressources Génétiques des Plantes Fourragères et à Gazon, pp. 131–168. BRG-INRA, Paris.

    Google Scholar 

  • Pupilli, F., S. Businelli, F. Paolocci, C. Scotti, F. Damiani & S. Arcioni, 1996. Extent of RFLP variability in tetraploid populations of alfalfa, Medicago sativa. Plant Breed 115: 106–112.

    Article  Google Scholar 

  • Pupilli, F., P. Labombarda, C. Scotti & S. Arcioni, 2000. RFLP analysis allows for the identification of alfalfa ecotypes. Plant Breed 119: 271–276.

    Article  CAS  Google Scholar 

  • Riday, H. & E.C. Brummer, 2004. Performance of intersubspecific alfalfa hybrids in sward versus space planted plots. Euphytica 138: 107–112.

    Article  Google Scholar 

  • Rotili, P. & L. Zannone, 1975. Principaux aspects d'une méthode de sélection de la luzerne basée sur des dispositifs qui utilisent la concurrence entre les plantes. Ann Amélior Plantes 25: 29–49.

    Google Scholar 

  • Rotili, P., T.H. Busbice & Y. Demarly, 1996. Breeding and variety constitution in alfalfa: Present and future. In: G. Parente, J. Frame & S. Orsi (Eds.), Grassland and Land Use Systems, pp. 163–180. ERSA, Gorizia.

    Google Scholar 

  • Rotili, P., E. Piano, F. Veronesi, M. Romani & F. Papini, 1999. Erba medica. In: E. Piano (Ed.), Proposta di Revisione dei Criteri di Iscrizione delle Varietà di Specie Foraggere al Registro Nazionale - Parte Speciale, pp. 1–47. ISCF, Lodi.

    Google Scholar 

  • Rotili, P., G. Gnocchi, C. Scotti & S. Gnocchi, 2000. Studio degli ecotipi italiani di erba medica. L'Informatore Agrario 56(28): 29–33.

    Google Scholar 

  • Russi, L. & M. Falcinelli, 1997. Characterization and agronomic value of Italian landraces of lucerne (Medicago sativa). J Agric Sci Camb 129: 267–277.

    Article  Google Scholar 

  • SAS, 1999. SAS/STAT User's Guide – Version 8. SAS Institute Inc., Cary.

    Google Scholar 

  • Snedecor, G.W. & W.G. Cochran, 1967. Statistical Methods. Sixth Edition. Iowa Univ. Press, Ames.

    Google Scholar 

  • Sommovigo, A., V. Cazzola & R. Bravi, 1999. Problematiche relative alla produzione e commercializzazione di sementi foraggere leguminose e graminacee. Sementi Elette 45(3–4): 43–49.

    Google Scholar 

  • Tabaglio, V., M. Ligabue, F. Battini, L. Dal Re, C. Piazza, R. Reggiani, A. Robotti & F. Ruozzi, 2004. Liste varietali dell'erba medica per il 2004. L'Informatore Agrario 60(2): 37–43.

    Google Scholar 

  • Turner, N.C., 1979. Drought resistance and adaptation to water deficits in crop plants. In: H. Mussell & R.C. Staples (Eds.), Stress Physiology in Crop Plants, pp. 343–372. J. Wiley & Sons, Chichester.

    Google Scholar 

  • UPOV, 1979. Revised General Introduction to the Guidelines for the Conduct of Tests for Distinctness, Homogeneity and Stability of New Varieties of Plants. UPOV, Genève.

    Google Scholar 

  • UPOV, 1988. Guidelines for the Conduct of Tests for Distinctness, Homogeneity and Stability – Lucerne (Medicago sativa L. & Medicago × varia Martyn). UPOV, Genève.

    Google Scholar 

  • Viands, D.R., P. Sun & D.K. Barnes, 1988. Pollination control: mechanical and sterility. In: A.A. Hanson, D.K. Barnes & R.R. Hill (Eds.), Alfalfa and Alfalfa Improvement, pp. 931–960. ASA, CSSA, SSSA Publishers, Madison.

    Google Scholar 

  • Volenec, J.J., S.M. Cunningham, D.M. Haagenson, W.K. Berg, B.C. Joern & D.W. Wiersma, 2002. Physiological genetics of alfalfa improvement: Past failures, future prospects. Field Crops Res 75: 97–110.

    Article  Google Scholar 

  • Weishaar, M.A., E.C. Brummer, J.J. Volenec, K.J. Moore & S. Cunningham, 2005. Improving winter hardiness in nondormant alfalfa germplasm. Crop Sci 45: 60–65.

    Article  Google Scholar 

  • Zaccardelli, M., S. Gnocchi, M. Carelli & C. Scotti, 2003. Variation among and within Italian alfalfa ecotypes by means of bio-agronomic characters and amplified fragment length polymorphism analyses. Plant Breed 122: 61–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Annicchiarico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annicchiarico, P. Diversity, genetic structure, distinctness and agronomic value of Italian lucerne (Medicago sativaL.) landraces. Euphytica 148, 269–282 (2006). https://doi.org/10.1007/s10681-005-9024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9024-0

Keywords

Navigation