Skip to main content
Log in

SSR-based molecular profiling of 237 persimmon (Diospyros kaki Thunb.) germplasms using an ASTRINGENCY-linked marker

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Pollination-constant non-astringent (PCNA) trait is desirable in persimmon production because it confers natural astringency loss in mature persimmon fruit. Expression of the PCNA trait requires six homozygous recessive PCNA (ast) alleles at the single ASTRINGENCY (AST) locus in hexaploid persimmon. When crossing non-PCNA accessions to breed PCNA offspring, knowledge of ast and non-PCNA (AST) allele dosage in the parental accessions is important, because more PCNA offspring can segregate from a non-PCNA parent with more ast and fewer AST alleles. Previously, we have demonstrated that a region linked to the AST locus has numerous fragment size polymorphisms with varying numbers of simple sequence repeats. Here, we reveal the polymorphisms in this region in a broad collection of persimmon germplasms. Among 237 accessions, we distinguished 21 AST- and 5 ast-linked fragments with different sizes. Based on the number of fragments detected per individual, we identified 21 non-PCNA accessions with three different ast alleles; by crossing these with a PCNA parent, we obtain PCNA offspring under autohexaploid inheritance. Furthermore, AST and ast allelic combination patterns in hexaploid persimmon were shown to be applicable to cultivar identification of non-PCNA accessions. We directly sequenced ast-linked fragments from 48 accessions with one-size peak of ast-linked fragment and found two distinctive groups of fragments based on single nucleotide polymorphisms. This result suggests that a bottleneck event occurred during ast allele development. We conclude that our fragment size profile can be used to accelerate PCNA breeding that uses non-PCNA parents and to study ast allele accumulation in persimmon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agricultural Research Station (1912) Investigation on persimmon cultivars. Bull Agric Res Stn (extra) 28:1–46 (in Japanese)

    Google Scholar 

  • Akagi T, Kanzaki S, Gao M, Tao R, Parfitt DE, Yonemori K (2009) Quantitative real-time PCR to determine allele number for the astringency locus by analysis of a linked marker in Diospyros kaki Thunb. Tree Genet Genomes 5:483–492. https://doi.org/10.1007/s11295-009-0202-4

    Article  Google Scholar 

  • Akagi T, Takeda Y, Yonemori K, Ikegami A, Kono A, Yamada M, Kanzaki S (2010) Quantitative genotyping for the astringency locus in hexaploid persimmon cultivars using quantitative real-time PCR. J Am Soc Hortic Sci 135:59–66

    Google Scholar 

  • Akagi T, Tao R, Tsujimoto T, Kono A, Yonemori K (2012) Fine genotyping of a highly polymorphic ASTRINGENCY-linked locus reveals variable hexasomic inheritance in persimmon (Diospyros kaki Thunb.) cultivars. Tree Genet Genomes 8:195–204. https://doi.org/10.1007/s11295-011-0432-0

    Article  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York and London, pp 390–399

    Google Scholar 

  • Badenes M, Garcés A, Romero C, Romero M, Clavé J, Rovira M, Llácer G (2003) Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet Resour Crop Evol 50:579–585. https://doi.org/10.1023/A:1024474719036

    Article  CAS  Google Scholar 

  • Bellini E, Giordani E (2005) Germplasm and breeding of persimmon in Europe. Acta Hortic 685:65–75. https://doi.org/10.17660/ActaHortic.2005.685.6

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouquet A (1986) Introduction dans l’espèce Vitis vinifera L. d’un caractère de résistance à l’oidium (Uncinula necator Schw. Burr.) issu de l’espèce Muscadinia rotundifolia (Michx.) Small. Vignevini 12(suppl):141–146 (in French)

    Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20:1004–1010

    CAS  PubMed  Google Scholar 

  • Cho SK, Cho TH (1965) Studies on the local varieties of persimmon in Korea. Res Rep RDA 8:147–190 (in Korean with English summary)

    Google Scholar 

  • Du X, Zhang Q, Luo Z (2009) Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genet Genomes 5:235–245. https://doi.org/10.1007/s11295-008-0182-9

    Article  Google Scholar 

  • Fruit Tree Experiment Station of Hiroshima Prefecture (1979) Showa 53-nendo Shubyo-tokusei-bunrui-chosa-hokokusho (Kaki). Fruit Tree Experiment Station of Hiroshima Prefecture, Akitsu, Hiroshima

  • Guo DL, Luo ZR (2011) Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis. Genet Mol Res 10:1060–1068. https://doi.org/10.4238/vol10-2gmr1100

    Article  CAS  PubMed  Google Scholar 

  • Ikeda I, Yamada M, Kurihara A, Nishida T (1985) Inheritance of astringency in Japanese persimmon. J Jpn Soc Hortic Sci 54:39–45. https://doi.org/10.2503/jjshs.54.39 (in Japanese with English summary)

    Article  Google Scholar 

  • Ikegami A, Eguchi S, Yonemori K, Yamada M, Sato A, Mitani N, Kitajima A (2006) Segregations of astringent progenies in the F1 populations derived from crosses between a Chinese pollination-constant nonastringent (PCNA) ‘Luo Tian Tian Shi’, and Japanese PCNA and pollination-constant astringent (PCA) cultivars of Japanese origin. Hortscience 41:561–563

    Google Scholar 

  • Ikegami A, Yonemori K, Sugiura A, Sato A, Yamada M (2004) Segregation of astringency in F1 progenies derived from crosses between pollination-constant, nonastringent persimmon cultivars. Hortscience 39:371–374

    Google Scholar 

  • Kajiura M (1946) Persimmon cultivars and their improvement 2. Breed Hortic 1:175–182 (in Japanese)

    Google Scholar 

  • Kanzaki S, Akagi T, Masuko T, Kimura M, Yamada M, Sato A, Mitani N, Utsunomiya N, Yonemori K (2010) SCAR markers for practical application of marker-assisted selection in persimmon (Diospyros kaki Thunb.) breeding. J Jpn Soc Hortic Sci 79:150–155. https://doi.org/10.2503/jjshs1.79.150

    Article  CAS  Google Scholar 

  • Kanzaki S, Sato A, Yamada M, Utsunomiya N, Kitajima A, Ikegami A, Yonemori K (2008) RFLP markers for the selection of pollination-constant and non-astringent (PCNA)-type persimmon and examination of the inheritance mode of the markers. J Jpn Soc Hortic Sci 77:28–32. https://doi.org/10.2503/jjshs1.77.28

    Article  Google Scholar 

  • Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A (2000) Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon (Diospyros kaki Thunb.) from Japan and China using amplified fragment length polymorphism (AFLP). J Jpn Soc Hortic Sci 69:665–670. https://doi.org/10.2503/jjshs.69.665

    Article  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N (2001) Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci 160:543–550. https://doi.org/10.1016/S0168-9452(00)00425-8

    Article  CAS  PubMed  Google Scholar 

  • Kono A, Kobayashi S, Onoue N, Sato A (2016) Characterization of a highly polymorphic region closely linked to the AST locus and its potential use in breeding of hexaploid persimmon (Diospyros kaki Thunb.) Mol Breed 36:56. https://doi.org/10.1007/s11032-016-0480-0

    Article  Google Scholar 

  • Kono A, Onoue N, Sato A (2018) Extracting DNA from dormant buds and cambium tissue of persimmon. Acta Hortic. (in press)

  • Luo ZR, Yonemori K, Sugiura A (1995) Evaluation of RAPD analysis for cultivar identification of persimmons. J Jpn Soc Hortic Sci 64:535–541. https://doi.org/10.2503/jjshs.64.535 (in Japanese with English summary)

    Article  CAS  Google Scholar 

  • Maki S, Oyama K, Kurahashi T, Nakahira T, Kawabata T, Yamada T (2001) RFLP analysis for cultivar identification of persimmons. Sci Hortic 91:407–412. https://doi.org/10.1016/S0304-4238(01)00254-0

    Article  CAS  Google Scholar 

  • Mitani N, Kono A, Yamada M, Sato A, Kobayashi S, Ban Y, Ueno T, Shiraishi M, Kanzaki S, Tsujimoto T, Yonemori K (2014a) Practical marker-assisted selection using two SCAR markers for fruit astringency type in crosses of ‘Taiten’ × PCNA cultivars in persimmon breeding. Sci Hortic 170:219–223. https://doi.org/10.1016/j.scienta.2014.03.001

    Article  CAS  Google Scholar 

  • Mitani N, Kono A, Yamada M, Sato A, Kobayashi S, Ban Y, Ueno T, Shiraishi M, Kanzaki S, Tsujimoto T, Yonemori K (2014b) Application of marker-assisted selection in persimmon breeding of PCNA offspring using SCAR markers among the population from the cross between non-PCNA ‘Taigetsu’ and PCNA ‘Kanshu’. Hortscience 49:1132–1135

    CAS  Google Scholar 

  • Naval MM, Zuriaga E, Pecchioli S, Llácer G, Giordani E, Badenes ML (2010) Analysis of genetic diversity among persimmon cultivars using microsatellite markers. Tree Genet Genomes 6:677–687. https://doi.org/10.1007/s11295-010-0283-0

    Article  Google Scholar 

  • Parfitt DE, Yonemori K, Honsho C, Nozaka M, Kanzaki S, Sato A, Yamada M (2015) Relationships among Asian persimmon cultivars, astringent and non-astringent types. Tree Genet Genomes 11:24. https://doi.org/10.1007/s11295-015-0848-z

    Article  Google Scholar 

  • Pasqualotto AC, Denning DW, Anderson MJ (2007) A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. J Clin Microbiol 45:522–528. https://doi.org/10.1128/JCM.02136-06

    Article  CAS  PubMed  Google Scholar 

  • Ruengphayak S, Chaichumpoo E, Phromphan S, Kamolsukyunyong W, Sukhaket W, Phuvanartnarubal E, Korinsak S, Korinsak S, Vanavichit A (2015) Pseudo-backcrossing design for rapidly pyramiding multiple traits into a preferential rice variety. Rice 8:7. https://doi.org/10.1186/s12284-014-0035-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato A, Yamada M (2016) Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breed Sci 66:60–68. https://doi.org/10.1270/jsbbs.66.60

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. https://doi.org/10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Pecchioli S, Romero C, Vilanova S, Llácer G, Giordani E, Badenes ML (2006) Development of microsatellite markers in polyploid persimmon (Diospyros kaki Lf) from an enriched genomic library. Mol Ecol Notes 6:368–370. https://doi.org/10.1111/j.1471-8286.2006.01236.x

    Article  CAS  Google Scholar 

  • Sugiura A, Yonemori K, Tetsumura T, Tao R, Yamada M, Yamane H (1990) Identification of pollination-constant and non-astringent type cultivars of Japanese persimmon by leaf isozyme analysis. J Jpn Soc Hortic Sci (supplement 1) 59:44–45 (in Japanese)

    Google Scholar 

  • Tamura M, Tao R, Yonemori K, Utsunomiya N, Sugiura A (1998) Ploidy level and genome size of several Diospyros species. J Jpn Soc Hortic Sci 67:306–312. https://doi.org/10.2503/jjshs.67.306

    Article  CAS  Google Scholar 

  • Tao R, Sugiura A (1987) Cultivar identification of Japanese persimmon by leaf isozymes. Hortscience 22:932–935

    CAS  Google Scholar 

  • Tao R, Tetsumura T, Sugiura A (1989) Use of leaf isozymes to discriminate among Japanese persimmon (Diospyros kaki L.) cultivars. Mem Coll Agric Kyoto Univ 135:31–42

    Google Scholar 

  • Wang R (1982) The origin of ‘Luotian-Tianshi’. Chinese Fruit Tree 2:16–19 (in Chinese)

  • Wang R, Yong Y, Gaochao L (1997) Chinese persimmon germplasm resources. Acta Hortic 436:43–50. https://doi.org/10.17660/ActaHortic.1997.436.3

    CAS  Google Scholar 

  • Yamada M (1993) Persimmon breeding in Japan. Jpn Agric Res Q 27:33–37

    Google Scholar 

  • Yamada M (1996a) Aizu Mishirazu. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 204–205 (in Japanese with English summary)

    Google Scholar 

  • Yamada M (1996b) Ichida Gaki. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 196–197 (in Japanese with English summary)

    Google Scholar 

  • Yamada M (1996c) Saijo. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 192–193 (in Japanese with English summary)

    Google Scholar 

  • Yamada M (1996d) Zenjimaru. In: Kozaki I, Ueno I, Tsuchiya S, Kajiura I (eds) Shinpen Genshoku Kudamono Zusetsu, 1st edn. Yokendo, Tokyo, pp 186–187 (in Japanese with English summary)

    Google Scholar 

  • Yamada M, Giordani E, Yonemori K (2012) Persimmon. In: Badenes ML, Byrne (eds) Fruit breeding. Springer, Berlin, pp 663–693

    Chapter  Google Scholar 

  • Yamada M, Yamane H, Ukai Y (1994) Genetic analysis of Japanese persimmon fruit weight. J Am Soc Hortic Sci 119:1298–1302

    Google Scholar 

  • Yamagishi M, Matsumoto S, Nakatsuka A, Itamura H (2005) Identification of persimmon (Diospyros kaki) cultivars and phenetic relationships between Diospyros species by more effective RAPD analysis. Sci Hortic 105:283–290. https://doi.org/10.1016/j.scienta.2005.01.020

    Article  CAS  Google Scholar 

  • Yonemori K, Honsho C, Kitajima A, Aradhya M, Giordani E, Bellini E, Parfitt DE (2008) Relationship of European persimmon (Diospyros kaki Thunb.) cultivars to Asian cultivars, characterized using AFLPs. Genet Resour Crop Evol 55:81–89. https://doi.org/10.1007/s10722-007-9216-7

    Article  CAS  Google Scholar 

  • Yonemori K, Ikegami A, Kitajima A, Luo S, Kanzaki A, Sato A, Yamada M, Yang Y, Wang R (2005) Existence of several pollination constant non-astringent type persimmons in China. Acta Hortic 685:77–83. https://doi.org/10.17660/ActaHortic.2005.685.7

    Article  Google Scholar 

  • Yonemori K, Sugiura A, Yamada M (2000) Persimmon genetics and breeding. In: Janick J (ed) Plant Breed Rev, vol 19. John Wiley & Sons, Inc, New York, pp 191–225. https://doi.org/10.1002/9780470650172.ch6

    Google Scholar 

  • Zhuang DH, Kitajima A, Ishida M, Sobajima Y (1990) Chromosome numbers of Diospyros kaki cultivars. J Jpn Soc Hortic Sci 59:289–297. https://doi.org/10.2503/jjshs.59.289 (in Japanese with English summary)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tamami Nakasumi (NIFTS) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Onoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

The data obtained by the direct sequence analysis of the 45 accessions with only one-size peak of the ast allele-linked fragment was submitted to DNA Data Bank of Japan (DDBJ). The full list of the data is described in Supplemental Table S3.

Additional information

Communicated by C. Chen

Noriyuki Onoue and Shozo Kobayashi should be considered co-first authors.

Shozo Kobayashi is retired.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onoue, N., Kobayashi, S., Kono, A. et al. SSR-based molecular profiling of 237 persimmon (Diospyros kaki Thunb.) germplasms using an ASTRINGENCY-linked marker. Tree Genetics & Genomes 14, 28 (2018). https://doi.org/10.1007/s11295-018-1239-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1239-z

Keywords

Navigation