Skip to main content
Log in

Mapping groundwater potentiality by using hybrid machine learning models under the scenario of climate variability: a national level study of Bangladesh

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A severe threat to natural resources and human livelihood is groundwater scarcity. Therefore, mapping groundwater potentiality (GWP) is necessary for future resource management. In this article, a framework for conducting ensemble modeling is introduced. This framework is used to map GWP at the national level under the scenario of climatic variability. Thirteen elements linked to topography, geology, hydrology, and land cover, as well as six climatic indicators based on historical time series data, were used to map the GWP. This study has used three conventional machine learning algorithms (< MLAs), such as logistic model tree, logistic regression, and artificial neural network and five ensemble models by combining standalone models with random forest under stacking framework to produce GWP map. Using the empirical and binormal receiver operating characteristic curves, the GWP mapping has been validated. Result shows that Bangladesh's major rivers run along the high GWP zones in the country's southern and central regions. In addition, the validation using the area under curve (AUC) of ROC curve demonstrates that the stacking model which combined all three MLAs outperformed other models (AUC: 0.971). The findings of this study may help the authorities and stakeholders to formulate the adequate groundwater management plans at national level. In addition, the suggested method might be applied to map GWP on a broader scale in additional nations as well as at the continental level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANN:

Artificial neural network

AUC:

Area under curve

BMD:

Bangladesh meteorological department

CART:

Classification and regression tree

CDD:

Consecutive dry days

DEM:

Digital elevation model

EML:

Ensemble machine learning

ET:

Evapotranspiration

ETCCDI:

Expert team on climate change detection and indices

FPR:

False positive rate

GIS:

Geographic information systems

GWP:

Groundwater potentiality

IDW:

Inverse distance weighted

LULC:

Land use land cover

LMT:

Logistic model tree

LR:

Logistic regression

MDA:

Mean decrease accuracy

MDG:

Mean decrease gini

ML:

Machine learning

MLA:

Machine learning algorithm

MMK:

Modified Mann–Kendall

OOB:

Out-of-bag

RF:

Random forest

ROC:

Receiver operating characteristic

SPI:

Stream power index

SRTM:

Shuttle radar topography mission

STI:

Sediment transport index

SVM:

Support vector machine

TFPW:

Trend-free pre-whitening

TPI:

Topographic position index

TPR:

True positive rate

TRI:

Topographic roughness index

TWI:

Topographic wetness index

USGS:

United States geological survey

VIF:

Variance inflation factors

References

  • Abedin, M. A., Collins, A. E., Habiba, U., & Shaw, R. (2019). Climate change, water scarcity, and health adaptation in southwestern coastal Bangladesh. International Journal of Disaster Risk Science, 10, 28–42.

    Article  Google Scholar 

  • Ahmad, M. U. D., Kirby, M., Islam, M. S., Hossain, M., & Islam, M. (2014). Groundwater use for irrigation and its productivity: Status and opportunities for crop intensification for food security in Bangladesh. Water Resources Management, 28(5), 1415–1429.

    Article  Google Scholar 

  • Ahmed, A., Ghosh, P. K., Hasan, M., & Rahman, A. (2020). Surface and groundwater quality assessment and identification of hydrochemical characteristics of a south-western coastal area of Bangladesh. Environmental Monitoring and Assessment, 192, 1–15.

    Article  Google Scholar 

  • Ahmed, N., Hoque, M. A. A., Pradhan, B., & Arabameri, A. (2021). Spatio-temporal assessment of groundwater potential zone in the drought-prone area of Bangladesh using GIS-based bivariate models. Natural Resources Research, 30(5), 3315–3337.

    Article  Google Scholar 

  • Ahmed, I. A., Salam, R., Naikoo, M. W., Rahman, A., Praveen, B., Hoai, P. N., & Elkhrachy, I. (2022). Evaluating the variability in long-term rainfall over India with advanced statistical techniques. Acta Geophysica, 70, 1–18.

    Article  Google Scholar 

  • Ali, M. H., Abustan, I., Rahman, M. A., & Haque, A. A. M. (2012). Sustainability of groundwater resources in the north-eastern region of Bangladesh. Water Resources Management, 26, 623–641.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

    Google Scholar 

  • Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. Science, 296(5575), 1985–1990.

    Article  CAS  Google Scholar 

  • Alshehri, F., & Abdelrahman, K. (2023). Groundwater potentiality of Wadi Fatimah, Western Saudi Arabia: Geophysical and remote sensing integrated approach. Water, 15(10), 1828.

    Article  CAS  Google Scholar 

  • Alshehri, F., Sultan, M., Karki, S., Alwagdani, E., Alsefry, S., Alharbi, H., & Sturchio, N. (2020). Mapping the distribution of shallow groundwater occurrences using remote sensing-based statistical modeling over southwest Saudi Arabia. Remote Sensing, 12(9), 1361.

    Article  Google Scholar 

  • Anik, A. H., Sultan, M. B., Alam, M., Parvin, F., Ali, M. M., & Tareq, S. M. (2023). The impact of climate change on water resources and associated health risks in Bangladesh: A review. Water Security, 18, 100133.

    Article  Google Scholar 

  • Arabameri, A., Pal, S. C., Rezaie, F., Nalivan, O. A., Chowdhuri, I., Saha, A., & Moayedi, H. (2021). Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques. Journal of Hydrology Regional Studies, 36, 100848.

    Article  Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from the southern Western Ghats India. Scientific Reports, 9(1), 1–17.

    Article  CAS  Google Scholar 

  • Asgher, M. S., Kumar, N., Kumari, M., Ahmad, M., Sharma, L., & Naikoo, M. W. (2022). Groundwater potential mapping of Tawi River basin of Jammu District, India, using geospatial techniques. Environmental Monitoring and Assessment, 194(3), 1–21.

    Google Scholar 

  • Banglapedia. (2021). Climatic zone. National encyclopedia of Bangladesh. https://en.banglapedia.org/index.php/Climatic_Zone

  • Becker, M., Papa, F., Karpytchev, M., Delebecque, C., Krien, Y., Khan, J. U., & Shum, C. K. (2020). Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta. In Proceedings national academy science, 117(4), 1867–1876

  • Bierkens, M. F., & Wada, Y. (2019). Non-renewable groundwater use and groundwater depletion: A review. Environmental Research Letters, 14(6), 063002.

    Article  Google Scholar 

  • Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 1–6.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Cai, H., Shi, H., Liu, S., & Babovic, V. (2021). Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central-eastern continental United States. Journal Hydrology Regional Studies, 37, 100930.

    Article  Google Scholar 

  • Chen, K. H., Hwang, C., Chang, L. C., & Tanaka, Y. (2021). Infiltration coefficient, percolation rate, and depth-dependent specific yields were estimated from 1.5 years of absolute gravity observations near a recharge lake in Pingtung, Taiwan. Journal Hydrology, 603, 127089.

    Article  Google Scholar 

  • Chowdhury, F. R., Ibrahim, Q. S. U., Bari, M. S., Alam, M. J., Dunachie, S. J., Rodriguez-Morales, A. J., & Patwary, M. I. (2018). The association between temperature, rainfall, and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS ONE, 13(6), e0199579.

    Article  Google Scholar 

  • Dey, N. C., Saha, R., Parvez, M., Bala, S. K., Islam, A. S., Paul, J. K., & Hossain, M. (2017). Sustainability of groundwater use for irrigation of dry-season crops in northwest Bangladesh. Groundwater for Sustainable Development, 4, 66–77.

    Article  Google Scholar 

  • Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324.

    Article  Google Scholar 

  • Elbeltagi, A., Salam, R., Pal, S. C., Zerouali, B., Shahid, S., Mallick, J., & Islam, A. R. M. T. (2022). Groundwater level estimation in northern region of Bangladesh using hybrid locally weighted linear regression and Gaussian process regression modeling. Theoretical and Applied Climatology, 149(1–2), 131–151.

    Article  Google Scholar 

  • Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945–948.

    Article  Google Scholar 

  • Foster, S., Chilton, J., Nijsten, G. J., & Richts, A. (2013). Groundwater—a global focus on the ‘local resource.’ Current Opinion in Environment Sustainability, 5(6), 685–695.

    Article  Google Scholar 

  • Freeze, R. A., & Witherspoon, P. A. (1967). Theoretical analysis of regional groundwater flows 2. Effect of water-table configuration and subsurface permeability variation. Water Resources Research, 3(2), 623–634.

    Article  Google Scholar 

  • Giordano, M. (2009). Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34, 153–178.

    Article  Google Scholar 

  • Gómez-Escalonilla, V., Martínez-Santos, P., & Martín-Loeches, M. (2022). Preprocessing approaches in machine-learning-based groundwater potential mapping: An application to the Koulikoro and Bamako regions, Mali. Hydrology Earth System Science, 26(2), 221–243.

    Article  Google Scholar 

  • Guillaume, J. H. A., Hunt, R. J., Comunian, A., Blakers, R. S., & Fu, B. (2016). Methods for exploring uncertainty in groundwater management predictions. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J. D. Rinaudo, & A. Ross (Eds.), Integrated groundwater management. Cham: Springer.

    Google Scholar 

  • Hasan, K., Paul, S., Chy, T. J., & Antipova, A. (2021). Analysis of groundwater table variability and trend using ordinary kriging: The case study of Sylhet, Bangladesh. Applied Water Science, 11(7), 1–12.

    Article  Google Scholar 

  • Hofste, R. W., Reig, P., & Schleifer, L. (2019). 17 Countries, home to one-quarter of the world's population, face extremely high water stress. World Resource institute. https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress

  • Holland, R. A., Scott, K. A., Flörke, M., Brown, G., Ewers, R. M., Farmer, E., & Eigenbrod, F. (2015). Global impacts of energy demand on the freshwater resources of nations. In Proceedings of the national academy of sciences, 112(48), E6707–E6716.

  • Hong, Y., & Abdelkareem, M. (2022). Integration of remote sensing and a GIS-based method for revealing prone areas to flood hazards and predicting optimum areas of groundwater resources. Arabian Journal of Geosciences, 15(1), 1–14.

    Article  Google Scholar 

  • Hughes, A., Mansour, M., Ward, R., Kieboom, N., Allen, S., Seccombe, D., & Prudhomme, C. (2021). The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598, 126336.

    Article  Google Scholar 

  • Islam, A. R. M. T., Talukdar, S., Mahato, S., Kundu, S., Eibek, K. U., Pham, Q. B., & Linh, N. T. T. (2021a). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075.

    Article  Google Scholar 

  • Islam, H. T., Islam, A. R. M. T., Abdullah-Al-Mahbub, M., Shahid, S., Tasnuva, A., Kamruzzaman, M., & Ibrahim, S. M. (2021b). Spatiotemporal changes and modulations of extreme climatic indices in monsoon-dominated climate region linkage with large-scale atmospheric oscillation. Atmosphere Research, 264, 105840.

    Article  Google Scholar 

  • Islam, M. T., Hossain, M. B., Roy, D., Mahmud, M. N. H., Paul, P. L. C., Yesmin, M. S., & Kundu, P. K. (2021c). Behaviour of groundwater table with rainfall in north-west region of Bangladesh. Bangladesh Rice Journal, 25(2), 85–95.

    Article  Google Scholar 

  • Islam, Z., Ranganathan, M., Bagyaraj, M., Singh, S. K., & Gautam, S. K. (2022). Multi-decadal groundwater variability analysis using geostatistical method for groundwater sustainability. Environment, Development and Sustainability, 24(3), 3146–3164.

    Article  Google Scholar 

  • Kalantar, B., Al-Najjar, H. A., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Naghibi, S. A. (2019). Optimized conditioning factors using machine learning techniques for groundwater potential mapping. Water, 11(9), 1909.

    Article  Google Scholar 

  • Kendall, K. (1975). Thin-film peeling-the elastic term. Journal of Physics D Applied Physics, 8(13), 1449.

    Article  Google Scholar 

  • Khosravi, K., Panahi, M., & Tien Bui, D. (2018). Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology and Earth System Sciences, 22(9), 4771–4792.

    Article  Google Scholar 

  • Kirby, M., & Mainuddin, M. (2022). The impact of climate change, population growth and development on sustainable water security in Bangladesh to 2100. Scientific Reports, 12(1), 22344.

    Article  CAS  Google Scholar 

  • Kirby, J. M., Ahmad, M. D., Mainuddin, M., Palash, W., Quadir, M. E., Shah-Newaz, S. M., & Hossain, M. M. (2015). The impact of irrigation development on regional groundwater resources in Bangladesh. Agricultural Water Management, 159, 264–276.

    Article  Google Scholar 

  • Kumar, R. S., & Anwar, Z. (2021). Assessment of declining groundwater levels due to excessive pumping in the Dhaka District of Bangladesh. Environmental Earth Sciences, 80(8), 333.

    Article  Google Scholar 

  • Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine Learning, 59(1), 161–205.

    Article  Google Scholar 

  • Li, H., Lu, Y., Zheng, C., Zhang, X., Zhou, B., & Wu, J. (2020). Seasonal and inter-annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: A case study in Yaoba Oasis, Northwest China. Water, 12(1), 303.

    Article  CAS  Google Scholar 

  • Mainuddin, M., & Kirby, M. (2015). National food security in Bangladesh to 2050. Food Security, 7(3), 633–646.

    Article  Google Scholar 

  • Mallick, J., Talukdar, S., Alsubih, M., Almesfer, M. K., Shahfahad, Hang, H. T., & Rahman, A. (2022a). Integration of statistical models and ensemble machine learning algorithms (MLAs) for developing the novel hybrid groundwater potentiality models: a case study of semi-arid watershed in Saudi Arabia. Geocarto International, 1–32, 6442–6473.

    Article  Google Scholar 

  • Mallick, J., Talukdar, S., & Ahmed, M. (2022b). Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed, Saudi Arabia. Applied Water Science, 12(4), 77.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323.

    Article  Google Scholar 

  • Mojid, M. A., Parvez, M. F., Mainuddin, M., & Hodgson, G. (2019). Water table trend—a sustainability status of groundwater development in North-West Bangladesh. Water, 11(6), 1182.

    Article  Google Scholar 

  • Nair, H. C., Padmalal, D., Joseph, A., & Vinod, P. G. (2017). Delineation of groundwater potential zones in river basins using geospatial tools an example from southern Western Ghats, Kerala ,India. Journal Geovisualization Spatial Analysis, 1(1), 1–16.

    Google Scholar 

  • Nowreen, S., Taylor, R. G., Shamsudduha, M., Salehin, M., Zahid, A., & Ahmed, K. M. (2020). Groundwater recharge processes in an Asian mega-delta: Hydrometric evidence from Bangladesh. Hydrogeology Journal, 28(8), 2917–2932.

    Article  CAS  Google Scholar 

  • Pal, S., Kundu, S., & Mahato, S. (2020). Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh. Journal of Cleaner Production, 257, 120311.

    Article  Google Scholar 

  • Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 588, 125033.

    Article  Google Scholar 

  • Pradhan, A. M. S., Kim, Y. T., Shrestha, S., Huynh, T. C., & Nguyen, B. P. (2021). Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya. Environmental Science and Pollution Research, 28, 18501–18517.

    Article  Google Scholar 

  • Prasad, P., Loveson, V. J., Kotha, M., & Yadav, R. (2020). Application of machine learning techniques in groundwater potential mapping along the west coast of India. Giscience & Remote Sensing, 57(6), 735–752.

    Article  Google Scholar 

  • Rajasekhar, M., Upendra, B., & Raju, G. S. (2022). Identification of groundwater potential zones in southern India using geospatial and decision-making approaches. Applied Water Science, 12(4), 1–16.

    Article  Google Scholar 

  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 7(3), 1377–1389.

    Article  Google Scholar 

  • Rane, N. L., & Jayaraj, G. K. (2022). Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems. Environment, Development and Sustainability, 24(2), 2315–2344.

    Article  Google Scholar 

  • Ranganathan, P., Pramesh, C. S., & Aggarwal, R. (2017). Common pitfalls in statistical analysis: Measures of agreement. Perspectives in Clinical Research, 8(4), 187–191.

    Article  Google Scholar 

  • Refsgaard, J. C., Højberg, A. L., Møller, I., Hansen, M., & Søndergaard, V. (2010). Groundwater modeling in integrated water resources management—visions for 2020. Groundwater, 48(5), 633–648.

    Article  CAS  Google Scholar 

  • Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M. H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659.

    Article  CAS  Google Scholar 

  • Roy, S. K., & Zahid, A. (2021). Assessment of declining groundwater levels due to excessive pumping in the Dhaka District of Bangladesh. Environmental Earth Sciences, 80(8), 333.

    Article  Google Scholar 

  • Sahoo, S., Russo, T. A., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resources Research, 53(5), 3878–3895.

    Article  Google Scholar 

  • Salam, R., Islam, A. R. M., Pham, Q. B., Dehghani, M., Al-Ansari, N., & Linh, N. T. T. (2020). The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Science and Reports, 10(1), 1–21.

    Google Scholar 

  • Sarkar, S. K., Talukdar, S., Rahman, A., & Roy, S. K. (2022). Groundwater potentiality mapping using ensemble machine learning algorithms for sustainable groundwater management. Frontiers in Engineering and Built Environment, 2(1), 43–54.

    Article  Google Scholar 

  • Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in the US high plains and Central Valley. In Proceedings national academy science 109(24), 9320–9325

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Shahid, S., & Hazarika, M. K. (2010). Groundwater drought in the northwestern districts of Bangladesh. Water Resources Management, 24(10), 1989–2006.

    Article  Google Scholar 

  • Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., & Divya, B. V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12(3), 101079.

    Article  CAS  Google Scholar 

  • Siddik, M. S., Tulip, S. S., Rahman, A., Islam, M. N., Haghighi, A. T., & Mustafa, S. M. T. (2022). The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315, 115130.

    Article  Google Scholar 

  • Singh, P., Thakur, J. K., & Kumar, S. (2013). Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrological Sciences Journal, 58(1), 213–223.

    Article  Google Scholar 

  • Smit, B., & Pilifosova, O. (2003). Adaptation to climate change in the context of sustainable development and equity. Sustainable Development, 8(9), 9.

    Google Scholar 

  • Sresto, M. A., Siddika, S., Haque, M. N., & Saroar, M. (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environmental Challenges, 5, 100214.

    Article  Google Scholar 

  • Srivastava, P. K., Gupta, M., Singh, U., Prasad, R., Pandey, P. C., Raghubanshi, A. S., & Petropoulos, G. P. (2021). Sensitivity analysis of artificial neural network for chlorophyll prediction using hyperspectral data. Environment Development and Sustainability, 23(4), 5504–5519.

    Article  Google Scholar 

  • Talukdar, S., Ghose, B., Shahfahad, Salam, R., Mahato, S., Pham, Q. B., Linh, N. T. T., Costache, R., & Avand, M. (2020). Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research Risk Assessment, 34, 2277–2300.

    Article  Google Scholar 

  • Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S., Towfiqul Islam, A. R. M., & Mallick, J. (2021a). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin Bangladesh. Ecological Indicators, 126, 107612.

    Article  Google Scholar 

  • Talukdar, S., Pal, S., & Singha, P. (2021b). Proposing artificial intelligence based livelihood vulnerability index in river islands. Journal of Cleaner Production, 284, 124707.

    Article  Google Scholar 

  • Talukdar, S., Ahmed, S., Naikoo, M. W., Rahman, A., Mallik, S., Ningthoujam, S., & Ramana, G. V. (2023). Predicting lake water quality index with sensitivity-uncertainty analysis using deep learning algorithms. Journal of Cleaner Production, 406, 136885.

    Article  CAS  Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., Macdonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., … Treidel, H. (2013). Ground water and climate change. Nature Clinical Practice Endocrinology & Metabolism, 3(4), 322–329.

    Google Scholar 

  • Thanh, N. N., Thunyawatcharakul, P., Ngu, N. H., & Chotpantarat, S. (2022). Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation. Journal of Hydrology, 614, 128501.

    Article  Google Scholar 

  • Wada, Y., & Bierkens, M. F. (2014). Sustainability of global water use: Past reconstruction and future projections. Environmental Research Letters, 9(10), 104003.

    Article  Google Scholar 

  • Wada, Y., Wisser, D., & Bierkens, M. F. (2014). Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 5(1), 15–40.

    Article  Google Scholar 

  • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.

    Article  Google Scholar 

  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58(1), 185–195.

    Article  Google Scholar 

  • Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6), 4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3- 622-1).

Funding

This research has been funded by the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3- 622-1).

Author information

Authors and Affiliations

Authors

Contributions

SKS and S. designed the study and was responsible for the data collection as well as analysis of the data and wrote the initial draft; FA and AM were responsible for the data analysis, data curation and modeling as well as editing of the initial draft and supervised the project; BP helped in the data preparation as well as provided technical support; AR provided software guidance, helped in validation as well as reviewed the final manuscript.

Corresponding author

Correspondence to Fahad Alshehri.

Ethics declarations

Conflict of interest

No potential conflict of interest has been reported among the authors on any issue.

Consent to publish

All authors have read the manuscript and agreed to publish the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S.K., Alshehri, F., Shahfahad et al. Mapping groundwater potentiality by using hybrid machine learning models under the scenario of climate variability: a national level study of Bangladesh. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04687-2

Keywords

Navigation