Skip to main content

Advertisement

Log in

Revisiting the modern approach to manage agricultural solid waste: an innovative solution

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Agricultural solid waste (ASW) is a serious concern globally, specifically in agricultural countries like India, China, Japan, Indonesia, Malaysia, etc. A lot of agricultural waste like the remain of crop plants, peels, leaves, corn cob, decayed crops, etc., is produced directly or indirectly every year affecting the environment and is not appropriately managed. Therefore, to overcome this problem, there is a need to develop waste redemption techniques to transform solid waste into value-added products. The wastes are generally rich in carbohydrates, lipids, proteins, and many other organic and inorganic constituents. This composition allows us to produce numerous value-added products like livestock feed, bio-preservatives, biofuels, biofertilizers, single-cell proteins, nanoparticles, biodegradable plastic, chitosan, collagen, and antibodies. Additionally, various start-ups leading to new beneficial products from agricultural solid waste should be promoted. This review intends to explore the sources of agricultural solid waste generation and to provide a solution to manage the waste through modern technologies, saving the environment and boosting a country’s economy. The outcome of our study will lead toward a sustainable approach to waste management as we have comprises the most innovative and successful working models in one place. This newly developed technique will help to achieve the greater goal of sustainable development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data have been given in the manuscript.

Abbreviations

ASW:

Agricultural solid waste

WWF:

World wildlife fund

UNEP:

United Nations Environment Programme

VAP:

Value-added product

ICAR:

Indian Council of Agricultural Research

ICAR: NINFET:

ICAR-National Institute of Natural Fibre Engineering and Technology

ICAR:

NBAIM: ICAR-National Bureau of Agriculturally Important Microorganisms

ICAR:

CIRCOT: ICAR-Central Institute for Research on Cotton Technology

ICAR:

CMFRI: ICAR-Central Marine Fisheries Research Institute

ICAR:

CIPHET: ICAR-Central Institute of Post-Harvest Engineering and Technology

CTAB:

Cetyltrimethylammonium bromide

PHA:

Polyhydroxyalkanoates

PHB:

Poly3-hydroxybutyrate

SSF:

Solid-state fermentation

MTCC:

Amycolatopsis mediterranean

References

  • Abou Hussein, S. D., & Sawan, O. M. (2010). The utilization of agricultural waste as one of the environmental issues in Egypt (a case study). Journal of Applied Sciences Research., 6, 1116–1124.

    CAS  Google Scholar 

  • Adejumo, I. O., & Adebiyi, O. A. (2020). Agricultural solid wastes: Causes, effects, and effective management. Strategies of Sustainable Solid Waste Management, 15, 8.

    Google Scholar 

  • Akpan, I., Bankole, M. O., Adesemowo, A. M., & Latunde, D. G. (1999). Production of amylase by A. niger in a cheap solid medium using rice bran and agricultural materials. Tropical Science, 39, 77–79.

    Google Scholar 

  • Amran, M. A., Palaniveloo, K., Fauzi, R., Mohd Satar, N., Mohidin, T. B. M., Mohan, G., Razak, S. A., Arunasalam, M., Nagappan, T., & Jaya Seelan, S. S. (2021). Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability., 13, 11432. https://doi.org/10.3390/su132011432

    Article  CAS  Google Scholar 

  • Atinkut, H. B., Yan, T., Zhang, F., Qin, S., Gai, H., & Liu, Q. (2020). Cognition of agriculture waste and payments for a circular agriculture model in Central China. Science and Reports, 10, 1–15.

    Google Scholar 

  • Belden, J. B., Hofelt, C. S., & Lydy, M. J. (2000). Analysis of multiple pesticides in urban storm water using solid-phase extraction. Archives of Environmental Contamination and Toxicology, 38(1), 7–10.

    Article  CAS  Google Scholar 

  • Benhabiles, M. S., et al. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29, 48–56.

    Article  CAS  Google Scholar 

  • Bharj, R. S., Singh, G. N., & Kumar, R. (2020). Agricultural waste derived 2nd generation ethanol blended diesel fuel in India: A perspective. In A. Singh, Y. Sharma, N. Mustafi, & A. Agarwal (Eds.), Alternative fuels and their utilization strategies in internal combustion engines. Energy, environment, and sustainability. Springer. https://doi.org/10.1007/978-981-15-0418-1_2

    Chapter  Google Scholar 

  • Bradshaw, J. E. (2016). Clonal cultivars from multistage multitrait selection. In J. E. Bradshaw (Ed.), Plant breeding: Past present and future (pp. 343–386). Berlin: Springer.

    Chapter  Google Scholar 

  • Cesário, M. T., et al. (2014). Enhanced bioproduction of poly-3- hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31, 104–113.

    Article  Google Scholar 

  • Chandrappa, R., & Das, D. B. (2012). Solid waste management: principles and practice. Springer Science Business Media.

    Book  Google Scholar 

  • Chedea, V. S., et al. (2010). Patterns of carotenoid pigments extracted from two orange peel wastes (valencia and navel var.). Journal of Food Biochemistry, 34, 101–110.

    Article  CAS  Google Scholar 

  • Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., & Wang, X. (2009). Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Conversion and Management., 50(3), 668–673.

    Article  CAS  Google Scholar 

  • Chong, P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A., Hassan, O., & Nor, M. T. (2013). Enhancement of batch biohydrogen production from prehydrolysate of acid-treated oil palm empty fruit bunch. International Journal of Hydrogen Energy., 38(22), 9592–9599.

    Article  CAS  Google Scholar 

  • Chundawat, N. S., Parmar, B. S., Deuri, A. S., et al. (2022). Rice husk silica as a sustainable filler in the tire industry. Arabian Journal of Chemistry., 15, 104086. https://doi.org/10.1016/j.arabjc.2022.104086

    Article  CAS  Google Scholar 

  • Cui, J., et al. (2015). Rice husk-based porous carbon loaded with silver nanoparticles by a simple and cost-effective approach and their antibacterial activity. Journal of Colloid and Interface Science, 455, 117–124.

    Article  CAS  Google Scholar 

  • Davis, R., et al. (2013). Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresource Technology, 150, 202–209.

    Article  CAS  Google Scholar 

  • Deleanu, M., Lenghel, I., & Zubac, I. (1981). Data regarding the incidence decrease of some diseases under the conditions of urban environmental pollution reduction. Sante Publique (Bucur), 24(2–3), 239–248.

    CAS  Google Scholar 

  • Dharmendra, K. P. (2012). Production of lipase utilizing linseed oilcake as fermentation substrate. International Journal of Science, Environment and Technology, 1(3), 135–143.

    Google Scholar 

  • Din, G. Y., & Cohen, Y. (2012). modeling municipal solid waste management in Africa: Case study of Matadi, the Democratic Republic of Congo. Journal of Environmental Protection, 4, 435–445.

    Article  Google Scholar 

  • Du, W., Zhu, X., Chen, Y., Liu, W., Wang, W., Shen, G., Tao, S., & Jetter, J. J. (2018). Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. Environmental Pollution, 242, 1587–1597.

    Article  CAS  Google Scholar 

  • El-Sayed, M. H., & Chase, H. (2011). Trends in whey protein fractionation. Biotechnology Letters, 33, 1501–1511.

    Article  CAS  Google Scholar 

  • Enaime, G., & Lübken, M. (2021). Agricultural waste-based biochar for agronomic applications. Applied Sciences, 11, 8914. https://doi.org/10.3390/app11198914

    Article  CAS  Google Scholar 

  • Fahmy, T. Y. A., Fahmy, Y., Mobarak, F., et al. (2020). Biomass pyrolysis: Past, present, and future. Environment, Development and Sustainability, 22, 17–32. https://doi.org/10.1007/s10668-018-0200-5

    Article  Google Scholar 

  • Fahmy, Y., Fahmy, T. Y. A., Mobarak, F., et al. (2017). Agricultural residues (wastes) For manufacture of paper, board, and miscellaneous products: Background overview and future prospects. International Journal of ChemTech Research, 10, 424–448.

    Google Scholar 

  • Farhat, A., et al. (2011). Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract’s global yield and mechanism. Food Chemistry, 125, 255–261.

    Article  CAS  Google Scholar 

  • Gadde, B., Bonnet, S., Menke, C., et al. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157, 1554–1558.

    Article  CAS  Google Scholar 

  • Gayen, S., & Ghosh, U. (2011). Pectin methyl esterase production from mixed agrowastes by Penicillium notatum NCIM 923 in solid state fermentation. J Bioremed Biodegrad, 2, 119.

    Article  CAS  Google Scholar 

  • Harish, B. S., et al. (2015). Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydrate Polymers, 132, 104–110.

    Article  CAS  Google Scholar 

  • Hassan, S. A., et al. (2015). Various characteristics of multi-modified rice husk silica-anchored Ni or Pt nanoparticles as swift catalytic systems in some petrochemical processes. Journal of the Taiwan Institute of Chemical Engineers, 59, 484–495. https://doi.org/10.1016/j.jtice.2015.08.001

    Article  CAS  Google Scholar 

  • Hee, L.Y. (2008). Waste Management and Economic Growth. World Cities Summit Issue; 2008. Available online: https://www.csc.gov.sg/articles/waste-management-and-economic-growth. Accessed on 1 October 2021.

  • Ho, H. (2015). Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). Journal of Food Processing & Technology, 6, 437.

    Google Scholar 

  • Production of Bio-ethylene (1st ed., Vol. 1). (2013). [E-book]. IEA-ETSAP and IRENA. Retrieved February 2022, from https://irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA-ETSAP-Tech-Brief-I13-Production_of_Bio-ethylene.pdf

  • Jayathilakan, K., et al. (2012). Utilization of byproducts and waste materials from meat, poultry, and fish processing industries: A review. Journal of Food Science and Technology, 49, 278–293.

    Article  CAS  Google Scholar 

  • Karimi Estahbanati, M. R., Kong, X. Y., Eslami, A., & Sen, S. H. (2021). Current developments in the chemical upcycling of waste plastics using alternative energy sources. Chemsuschem, 14, 4152–4166.

    Article  CAS  Google Scholar 

  • Khan, S., Anjum, R., Raza, S. T., et al. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, 132403.

    Article  CAS  Google Scholar 

  • Kimothi, S. P., Panwar, S., & Khulbe, A. (2020). Creating wealth from agricultural waste (pp. 1–172). Indian Council of Agricultural Research.

    Google Scholar 

  • Kiran, E. U., et al. (2014). Enzyme production from food wastes using a biorefinery concept. Waste Biomass Valorization, 5, 903–917.

    Article  Google Scholar 

  • Klein-Marcuschamer, D., et al. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109, 1083–1087.

    Article  CAS  Google Scholar 

  • Kolpakova, A. F. (2004). Role of environmental pollution with heavy metals in chronic pulmonary diseases pathogenesis in North regions. Meditsina Truda I Promyshlennaia Ekologiia, 8, 14–19.

    Google Scholar 

  • Kotay, S. M., & Das, D. (2008). Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 33, 258–263.

    Article  Google Scholar 

  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 15(206), 112285.

    Article  Google Scholar 

  • Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomic and environmental implications of agricultural residue burning-a case study of Punjab India (pp. 25–26). Springer briefs in Environmental Science.

    Google Scholar 

  • Lee, M., Lee, D., Cho, J., Kim, S., & Park, C. (2013). Enzymatic biodiesel synthesis in semi-pilot continuous process in near-critical carbon dioxide. Applied Biochemistry and Biotechnology, 171(5), 1118–1127.

    Article  CAS  Google Scholar 

  • Liu, C. H., Chang, C. Y., Liao, Q., Zhu, X., Liao, C. F., & Chang, J. S. (2013). Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. International Journal of Hydrogen Energy, 38(35), 15807–15814.

    Article  CAS  Google Scholar 

  • Liu, W., et al. (2013). Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis. Journal of Agriculture and Food Chemistry, 61, 7366–7372.

    Article  CAS  Google Scholar 

  • Lu, Y., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68, 81–85.

    Article  CAS  Google Scholar 

  • Lundgren, A., & Hjertberg, T. (2010). Ethylene from renewable resources. In M. Kjellin & I. Johannson (Eds.), Surfactants renewable resources (pp. 109–26). John Wiley & Sons, Ltd.

    Chapter  Google Scholar 

  • Luo, Y., et al. (2015). Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+. Nanoscale, 7, 690–700.

    Article  CAS  Google Scholar 

  • Mahmood, T., & Hussain, S. T. (2010). Nanobiotechnology for the production of biofuels from spent tea. African Journal of Biotechnology, 9(6), 58–68.

    Google Scholar 

  • Maragkaki, A. E., Kotrotsios, T., Samaras, P., Manou, A., Lasaridi, K., & Manios, T. (2016). Quantitative and qualitative analysis of biomass from agro-industrial processes in the central macedonia region. Greece, Waste and Biomass Valorization, 7, 383–395.

    Article  CAS  Google Scholar 

  • Mehta, K., & Duhan, J. S. (2014). Production of invertase from Aspergillus niger using fruit peel waste as a substrate. International Journal of Pharma and Bio Sciences, 5(2), B353–B360.

    Google Scholar 

  • Meyer, B., Pailler, J. Y., Guignard, C., et al. (2011). Concentrations of dissolved herbicides and pharmaceuticalsin a small river in Luxembourg. Environmental Monitoring and Assessment, 180(1–4), 127–146.

    Article  CAS  Google Scholar 

  • Mir, A. A., & Bhat, A. A. (2022). Green banking and sustainability–a review. Arab Gulf Journal of Scientific Research, 40(3), 247–263.

    Article  Google Scholar 

  • Morita, M., & Sasaki, K. (2012). Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation. Applied Microbiology and Biotechnology, 94(3), 575–582.

    Article  CAS  Google Scholar 

  • Morris, Z. et al. (1997) Industrial processing of tomatoes and lycopene extraction, Lycored Natural Products Industries.

  • Munasinghe, K. A., et al. (2015). Utilization of chicken by-products to form collagen films. Journal of Food Processing, 2015, 6.

    Article  Google Scholar 

  • Munoz, A., et al. (2008). Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnology and Bioengineering, 100, 882–888.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., et al. (2006). Brewers’ spent grain: Generation, characteristics and potential applications. Journal of Cereal Science, 43, 1–14.

    Article  CAS  Google Scholar 

  • Nagai, T., & Suzuki, N. (2000). Isolation of collagen from fish waste material – skin, bone and fins. Food Chemistry, 68, 277–281.

    Article  CAS  Google Scholar 

  • Nahar, G., Mote, D., & Dupont, V. (2017). Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renewable and Sustainable Energy Reviews, 76, 1032–1052.

    Article  CAS  Google Scholar 

  • Nandi, I., & Ghosh, M. (2015). Studies on functional and antioxidant property of dietary fibre extracted from defatted sesame husk, rice bran and flaxseed. Bioactive Carbohydrates Dietary Fibre, 5, 129–136.

    Article  CAS  Google Scholar 

  • Nyam, K. L., et al. (2011). Optimization of supercritical CO2 extraction of phytosterol-enriched oil from Kalahari melon seeds. Food and Bioprocess Technology, 4, 1432–1441.

    Article  CAS  Google Scholar 

  • Obi, F. O., Ugwuishiwu, B. O., & Nwakaire, J. N. (2016). Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology, 35, 957–964.

    Article  Google Scholar 

  • Obruca, S., et al. (2015). Use of lignocellulosic materials for PHA production. Chemical and Biochemical Engineering Quarterly, 29, 135–144.

    Article  CAS  Google Scholar 

  • Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: An under-utilized renewable food biomass with great potential. Journal of Food Science and Technology, 51, 3527–3545.

    Article  CAS  Google Scholar 

  • Papanikolaou, S., Dimou, A., Fakas, S., Diamantopoulou, P., Philippoussis, A., Galiotou-Panayotou, M., & Aggelis, G. (2011). Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Journal of Applied Microbiology, 110(5), 1138–1150.

    Article  CAS  Google Scholar 

  • Patel, S. K. S., Kumar, P., & Kalia, V. C. (2012). Enhancing biological hydrogen production 707 through complementary microbial metabolisms. International Journal of Hydrogen Energy, 37(14), 10590–10603.

    Article  CAS  Google Scholar 

  • Prasad, M., et al. (2020). Efficient transformation of agricultural waste in India. In M. Naeem, A. Ansari, & S. Gill (Eds.), Contaminants in agriculture. Springer. https://doi.org/10.1007/978-3-030-41552-5_13

    Chapter  Google Scholar 

  • Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., & Pandey, A. (2004). Coconut oil cake—a potential raw material for the production of a-amylase. Bioresource Technology, 93, 169–174.

    Article  CAS  Google Scholar 

  • Rathore, B. S., Chauhan, N. P. S., Jadoun, S., et al. (2021). Synthesis and characterization of Chitosan-polyaniline-nickel (II) oxide nanocomposite. Journal of Molecular Structure, 1242, 130750.

    Article  CAS  Google Scholar 

  • Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58–69. https://doi.org/10.1016/j.tibtech.2015.10.008. Epub 2015 Nov 29 PMID: 26645658.

    Article  CAS  Google Scholar 

  • Rekha, K. S. S., Lakshmi, C., Devi, S. V., & Kumar, M. S. (2012). Production and optimization of lipase from Candida rugosa using groundnut oilcake under solid state fermentation. International Journal of Research in Engineering and Technology, 1, 571–577.

    Article  Google Scholar 

  • Roig, A., et al. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26, 960–969.

    Article  CAS  Google Scholar 

  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5, 1. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  • Saja, A. M. A., Zimar, A. M. Z., & Junaideen, S. M. (2021). Municipal solid waste management practices and challenges in the southeastern coastal cities of Sri Lanka. Sustainability, 13, 4556.

    Article  Google Scholar 

  • Saravanan, V., & Vijayakumar, S. (2014). Production of biosurfactant by Pseudomonas aeruginosa PB3A using agro-industrial wastes as a carbon source. Malays J Microbiol, 10(1), 57–62.

    Google Scholar 

  • Serea, C. P., & Barna, O. (2011). Phenolic content and antioxidant activity in milling fractions of oat. Cancer, 7, 8.

    Google Scholar 

  • Shahidi, F., & Synowiecki, J. (1999). Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. Journal of Agriculture and Food Chemistry, 39, 1527–1532.

    Article  Google Scholar 

  • Sharanappa, A., Wani, K. S., & Pallavi, P. (2011). Bioprocessing of food industrial waste for α-amylase production by solid state fermentation. International Journal of Advanced Biotechnology and Research, 2, 473–480.

    CAS  Google Scholar 

  • Sharma, P., et al. (2010). Utilization of wild apricot kernel press cake for extraction of protein isolate. Journal of Food Science and Technology, 47, 682–685.

    Article  CAS  Google Scholar 

  • Sila, A., et al. (2014). Chitin and chitosan extracted from shrimp waste using fish proteases aided process: Efficiency of chitosan in the treatment of unhairing effluents. Journal of Polymers and the Environment, 22, 78–87.

    Article  CAS  Google Scholar 

  • Silva, J. F. X., et al. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology, 196, 96–106.

    Article  CAS  Google Scholar 

  • Sindhu, R., et al. (2013). Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly3-hydroxybutyrate. Biochemical Engineering Journal, 78, 67–72.

    Article  CAS  Google Scholar 

  • Sindiri, M. K., Machavarapu, M., & Vangalapati, M. (2013). Alfa-amylase production and purifcation using fermented orange peel in solid state fermentation by Aspergillus niger. Ind J Appl Res, 3, 49–51.

    Article  Google Scholar 

  • Singh, E., Kumar, A., Mishra, R., & Kumar, S. (2022). Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere, 288, 132451.

    Article  CAS  Google Scholar 

  • Sodhi, H. K., Sharma, K., Gupta, J. K., & Soni, S. K. (2005). Production of a thermostable a-amylase from Bacillus sp. PS-7 by solid-state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525–534.

    Article  CAS  Google Scholar 

  • Strati, I. F., & Oreopoulou, V. (2011). Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food Science & Technology, 46, 23–29.

    Article  CAS  Google Scholar 

  • Tahergorabi, R., et al. (2011). Effect of isoelectric solubilization/precipitation and titanium dioxide on whitening and texture of proteins recovered from dark chicken-meat processing by-products. LWT - Food Science and Technology, 44, 896–903.

    Article  CAS  Google Scholar 

  • Tan, T., Shang, F., & Zhang, X. (2010). Current development of biorefinery in China. Biotechnology Advances, 28(5), 543–555.

    Article  Google Scholar 

  • Teh, L. S. (2015). Genetic variation and inheritance of phytosterol and oil content in winter oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 129(2016), 181–199.

    Google Scholar 

  • Tiwari, A., & Khawas, R. (2021). Food waste and agro by-products: A step towards food sustainability. InTechOpen. https://doi.org/10.5772/intechopen.96177

    Book  Google Scholar 

  • Tolba, G. M. K., et al. (2015). Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. Journal of Industrial and Engineering Chemistry, 29, 134–145.

    Article  CAS  Google Scholar 

  • Treiber, M. U., Grimsby, L. K., & Aune, J. B. (2015). Reducing energy poverty through increasing choice of fuels and stoves in Kenya: Complementing the multiple fuel model, Energy. Sustainable Development, 27, 54–62.

    Google Scholar 

  • Tripathi, K. D. (2008). Antimicrobial drugs. Essentials of medical pharmacology (6th ed., p. 710). New Delhi: Jaycee Brothers Medical Publishers Ltd.

    Google Scholar 

  • United Nations Environment Programme. (2021). UNEP Food Waste Index 2021 (1st ed., Vol. 1) [E-book]. United Nations Environment Programme. Retrieved March 4, 2021, from https://www.unep.org/resources/report/unep-food-waste-index-report-2021

  • Van-Thuoc, D., et al. (2008). Utilization of agricultural residues for poly (3-hydroxybutyrate) production by Halomonas boliviensis LC1. Journal of Applied Microbiology, 104, 420–428.

    CAS  Google Scholar 

  • Verspreet, J., et al. (2015). Purification of wheat grain fructans from wheat bran. Journal of Cereal Science, 65, 57–59.

    Article  CAS  Google Scholar 

  • Vidhyalakshmi, R., Vallinachiyar, C., & Radhika, R. (2012). Production of xanthan from agro-industrial waste. Journal of Advanced Scientific Research, 3, 56–59.

    Google Scholar 

  • Waller, J. L., et al. (2012). Mixed-culture polyhydroxyalkanoate production from olive oil mill pomace. Bioresource Technology, 120, 285–289.

    Article  CAS  Google Scholar 

  • Wang, S., et al. (2013). Characterization of acid-soluble collagen from bone of pacific cod (Gadus macrocephalus). Journal of Aquatic Food Product Technology, 22, 407–420.

    Article  CAS  Google Scholar 

  • Wang, S., Zhao, S., Uzoejinwa, B. B., et al. (2020). A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers Manag, 222, 113253.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, G., Alex, J., Zhang, T., & Ma, C. (2020). Research progress of energy utilization of agriculturalwaste in china: bibliometric analysis by citespace. Sustainability, 12, 812.

    Article  Google Scholar 

  • Wittmer, I. K., Bader, H. P., Scheidegger, R., et al. (2010). Significance of urban and agricultural landuse for biocide and pesticide dynamics in surface waters. Water Research, 44(9), 2850–2862.

    Article  CAS  Google Scholar 

  • Driven to Waste: The Global Impact of Food Loss and Waste on Farms. (2021). wwf. https://www.worldwildlife.org/publications/driven-to-waste-the-global-impact-of-food-loss-and-waste-on-farms

  • Xiong, X., Liu, X., Iris, K. M., Wang, L., Zhou, J., Sun, X., Rinklebe, J., Shaheen, S. M., Ok, Y. S., & Lin, Z. (2019). Potentially toxic elements in solid waste streams: Fate and management approaches. Environmental Pollution, 253, 680–707.

    Article  CAS  Google Scholar 

  • Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., & Sopian, K. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 1(18), 184–193.

    Article  Google Scholar 

  • Yu, J., & Stahl, H. (2008). Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource Technology, 99, 8042–8048.

    Article  CAS  Google Scholar 

  • Zhang, Y., et al. (2013). Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresource Technology, 147, 307–313.

    Article  CAS  Google Scholar 

  • Zhou, J., et al. (2014). Laccase production by Phomopsis liquidambari B3 cultured with food waste and wheat straw as the main nitrogen and carbon sources. Journal of the Air and Waste Management Association, 64, 1154–2116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Sapana Jadoun is grateful for the support of the National Research and Development Agency of Chile (ANID) and the projects, FONDECYT Postdoctoral 3200850, FONDECYT 1191572, PSEQ210016 and ANID/FONDAP/15110019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapana Jadoun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The author declares no conflict of interest.

Ethical approval

The submitted work is original and is not published or submitted elsewhere in any form or language.

Consent to participate

Consent was obtained from all individual participants included in the study.

Consent for publication

The author confirms that the work described has not been published before and is not under consideration for publication elsewhere. The work has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Swetanshu, Yadav, R. et al. Revisiting the modern approach to manage agricultural solid waste: an innovative solution. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03309-7

Keywords

Navigation