Skip to main content
Log in

Impact of adult predator incited fear in a stage-structured prey–predator model

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A two-species predator–prey model where the predators are separated into juvenile and mature predators has been considered in this article. Here, functional response in linear form is considered to know the impact of adult predator-induced fear in the stage-structured prey–predator model. Positivity and boundedness of the model system have been checked. Persistence conditions and existence condition(s) of each equilibria have been derived. The local and global stability analysis have been implemented both analytically and numerically along with Hopf bifurcation analysis with direction. From the analysis of the model system, it is observed that the mature predator-induced fear and rate of transition from juvenile (minor) predator to mature predator plays a crucial role in controlling the system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aiello, W. G., & Freedman, H. (1990). A time-delay model of single-species growth with stage structure. Mathematical biosciences, 101(2), 139–153.

    CAS  Google Scholar 

  • Aljetlawi, A. A., Sparrevik, E., & Leonardsson, K. (2004). Prey−predator size-dependent functional response: derivation and rescaling to the real world. Journal of Animal Ecology, 73(2), 239–252.

    Google Scholar 

  • Bandyopadhyay, M., & Banerjee, S. (2006). A stage-structured prey−predator model with discrete time delay. Applied Mathematics and Computation, 182(2), 1385–1398.

    Google Scholar 

  • Barman, D., Roy, J., & Alam, S. (2020). Trade-off between fear level induced by predator and infection rate among prey species. Journal of Applied Mathematics and Computing, 64, 635–663. https://doi.org/10.1007/s12190-020-01372-1.

    Article  Google Scholar 

  • Chattopadhyay, J., Sarkar, R. R., & El Abdllaoui, A. (2002). A delay differential equation model on harmful algal blooms in the presence of toxic substances. Mathematical Medicine and Biology: A Journal of the IMA, 19(2), 137–161.

    CAS  Google Scholar 

  • Creel, S., & Christianson, D. (2008). Relationships between direct predation and risk effects. Trends in Ecology & Evolution, 23(4), 194–201.

    Google Scholar 

  • Creel, S., Christianson, D., Liley, S., & Winnie, J. A. (2007). Predation risk affects reproductive physiology and demography of elk. Science, 315(5814), 960–960.

    CAS  Google Scholar 

  • Cresswell, W. (2011). Predation in bird populations. Journal of Ornithology, 152(1), 251–263.

    Google Scholar 

  • Das, A., & Samanta, G. (2018). Modeling the fear effect on a stochastic prey−predator system with additional food for the predator. Journal of Physics A: Mathematical and Theoretical, 51(46), 465601.

    Google Scholar 

  • Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Transactions on Mathematical Software (TOMS), 29(2), 141–164.

    Google Scholar 

  • Elliott, K. H., Betini, G. S., & Norris, D. R. (2017). Fear creates an allee effect: experimental evidence from seasonal populations. Proceedings of the Royal Society B: Biological Sciences, 284(1857), 20170878.

    Google Scholar 

  • Freedman, H., & Ruan, S. G. (1995). Uniform persistence in functional differential equations. Journal of Differential Equations, 115(1), 173–192.

    Google Scholar 

  • Gakkhar, S., & Gupta, K. (2017). Dynamics of a stage-structured predator–prey model. International Journal of Applied Physics and Mathematics, 7(1), 24.

    Google Scholar 

  • Georgescu, P., & Hsieh, Y. H. (2007). Global dynamics of a predator–prey model with stage structure for the predator. SIAM Journal on Applied Mathematics, 67(5), 1379–1395.

    Google Scholar 

  • Georgescu, P., & Morosanu, G. (2006). Global stability for a stage-structured predator–prey model. Mathematical Sciences Research Journal, 10(8), 214.

    Google Scholar 

  • Gourley, S. A., & Kuang, Y. (2004). A stage structured predator–prey model and its dependence on maturation delay and death rate. Journal of Mathematical Biology, 49(2), 188–200.

    Google Scholar 

  • Hassard, B.D., Hassard, B., Kazarinoff, N.D., Wan, Y.H., & Wan, Y.W. (1981). Theory and applications of Hopf bifurcation (vol 41). CUP Archive

  • Hespenheide, H. A. (1973). Ecological inferences from morphological data. Annual Review of Ecology and Systematics, 4(1), 213–229.

    Google Scholar 

  • Huang, C., Qiao, Y., & Huang, L. (2018). Agarwal RP (2018) Dynamical behaviors of a food-chain model with stage structure and time delays. Advances in Difference Equations, 1, 186.

    Google Scholar 

  • John Power, R., & Shem Compion, R. (2009). Lion predation on elephants in the savuti, chobe national park, botswana. African Zoology, 44(1), 36–44.

    Google Scholar 

  • Kar, T., & Matsuda, H. (2006). Controllability of a harvested prey−predator system with time delay. Journal of Biological Systems, 14(02), 243–254.

    Google Scholar 

  • Khajanchi, S. (2014). Dynamic behavior of a beddington-deangelis type stage structured predator–prey model. Applied Mathematics and Computation, 244, 344–360.

    Google Scholar 

  • Khajanchi, S. (2017). Modeling the dynamics of stage-structure predator–prey system with monod-haldane type response function. Applied Mathematics and Computation, 302, 122–143.

    Google Scholar 

  • Kundu, S., & Maitra, S. (2018). Dynamics of a delayed predator–prey system with stage structure and cooperation for preys. Chaos, Solitons & Fractals, 114, 453–460.

    Google Scholar 

  • LaSalle, J. P. (1976). The stability of dynamical systems (Vol. 25). Philadelphia: SIAM.

    Google Scholar 

  • Lima, S. L. (1998). Nonlethal effects in the ecology of predator–prey interactions. Bioscience, 48(1), 25–34.

    Google Scholar 

  • Lima, S. L. (2009). Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biological Reviews, 84(3), 485–513.

    Google Scholar 

  • Lingle, S. (2001). Anti-predator strategies and grouping patterns in white-tailed deer and mule deer. Ethology, 107(4), 295–314.

    Google Scholar 

  • Lu, Y., Pawelek, K. A., & Liu, S. (2017). A stage-structured predator–prey model with predation over juvenile prey. Applied Mathematics and Computation, 297, 115–130.

    Google Scholar 

  • Magnússon, K. G. (1999). Destabilizing effect of cannibalism on a structured predator–prey system. Mathematical Biosciences, 155(1), 61–75.

    Google Scholar 

  • Meng, X. Y., Huo, H. F., Xiang, H., & Qy, Yin. (2014). Stability in a predator–prey model with crowley-martin function and stage structure for prey. Applied Mathematics and Computation, 232, 810–819.

    Google Scholar 

  • Nagumo, M. (1942). Über die lage der integralkurven gewöhnlicher differentialgleichungen. In Proceedings of the physico-mathematical society of Japan 3rd series (Vol. 24, pp. 551–559)

  • Pal, S., Majhi, S., Mandal, S., & Pal, N. (2019a). Role of fear in a predator–prey model with beddington-deangelis functional response. Zeitschrift für Naturforschung A, 74(7), 581–595.

    CAS  Google Scholar 

  • Pal, S., Pal, N., Samanta, S., & Chattopadhyay, J. (2019b). Effect of hunting cooperation and fear in a predator–prey model. Ecological Complexity, 39, 100770.

    Google Scholar 

  • Panday, P., Pal, N., Samanta, S., & Chattopadhyay, J. (2018). Stability and bifurcation analysis of a three-species food chain model with fear. International Journal of Bifurcation and Chaos, 28(01), 1850009.

    Google Scholar 

  • Panday, P., Pal, N., Samanta, S., & Chattopadhyay, J. (2019). A three species food chain model with fear induced trophic cascade. International Journal of Applied and Computational Mathematics, 5(4), 100.

    Google Scholar 

  • Panja, P., Mondal, S. K., & Chattopadhyay, J. (2017). Dynamical effects of anti-predator behaviour of adult prey in a predator–prey model with ratio-dependent functional response. Asian Journal of Mathematics and Physics, 1, 19–32.

    Google Scholar 

  • Peacor, S. D., Peckarsky, B. L., Trussell, G. C., & Vonesh, J. R. (2013). Costs of predator-induced phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators on prey. Oecologia, 171(1), 1–10.

    Google Scholar 

  • Pettorelli, N., Coulson, T., Durant, S. M., & Gaillard, J. M. (2011). Predation, individual variability and vertebrate population dynamics. Oecologia, 167(2), 305.

    Google Scholar 

  • Preisser, E. L., & Bolnick, D. I. (2008). The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PloS ONE, 3(6), e2465.

    Google Scholar 

  • Roy, J., & Alam, S. (2019a). Dynamics of an autonomous food chain model and existence of global attractor of the associated non-autonomous system. International Journal of Biomathematics, 12, 1950082.

    Google Scholar 

  • Roy, J., & Alam, S. (2019b). Fear factor in a prey−predator system in deterministic and stochastic environment. Physica A: Statistical Mechanics and its Applications, 541, 123359.

    Google Scholar 

  • Roy, J., Barman, D., & Alam, S. (2020). Role of fear in a predator–prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems, 197, 104176.

    Google Scholar 

  • Saitō, Y. (1986). Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator. Experimental & Applied Acarology, 2(1), 47–62.

    Google Scholar 

  • Sasmal, S. K. (2018). Population dynamics with multiple allee effects induced by fear factors-a mathematical study on prey−predator interactions. Applied Mathematical Modelling, 64, 1–14.

    Google Scholar 

  • Svennungsen, T. O., Holen, Ø. H., & Leimar, O. (2011). Inducible defenses: continuous reaction norms or threshold traits? The American Naturalist, 178(3), 397–410.

    Google Scholar 

  • Wang, W., & Chen, L. (1997). A predator–prey system with stage-structure for predator. Computers & Mathematics with Applications, 33(8), 83–91.

    Google Scholar 

  • Wang, X., & Zou, X. (2017). Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bulletin of Mathematical Biology, 79(6), 1325–1359.

    Google Scholar 

  • Wang, X., Zanette, L., & Zou, X. (2016). Modelling the fear effect in predator–prey interactions. Journal of Mathematical Biology, 73(5), 1179–1204.

    Google Scholar 

  • Xiao, Y. N., & Chen, L. S. (2004). Global stability of a predator–prey system with stage structure for the predator. Acta Mathematica Sinica, 20(1), 63–70.

    Google Scholar 

  • Zanette, L. Y., White, A. F., Allen, M. C., & Clinchy, M. (2011). Perceived predation risk reduces the number of offspring songbirds produce per year. Science, 334(6061), 1398–1401.

    CAS  Google Scholar 

Download references

Acknowledgements

Mr. Barman is thankful to Ministry of Human Resource Development (MHRD), India, for financial support for this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shariful Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, N., Barman, D. & Alam, S. Impact of adult predator incited fear in a stage-structured prey–predator model. Environ Dev Sustain 23, 9280–9307 (2021). https://doi.org/10.1007/s10668-020-01024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01024-1

Keywords

Navigation