Skip to main content
Log in

Quality attributes of commercial charcoals produced in Amapá, a Brazilian state located in the Amazonia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The charcoals of Amapá, a Brazilian state located in the Amazonia forest, have been produced from wastes of high-quality native and exotic wood species. However, there is no control to avoid mixing raw materials with different potentials for bioenergy. This work aimed to compare the quality of two brands of Amapá charcoals for domestic use, besides to analyze the variability of properties within and among packages. Charcoals of brands A and B were produced from harvesting wastes of Acacia mangium wood and sawing wastes of mixed native wood species, respectively. Five packages of each brand were acquired, from which thirteen samples were randomly selected for physical and chemical analyses. The higher heating value was estimated from the chemical composition. The brands were compared by analysis of variance or Wilcoxon–Mann–Whitney test. The variability within and between packages was investigated through box plots. The Amapá charcoals showed moisture content (≈ 7.3%) somewhat above the stipulated (5%) by the Brazilian standardization for domestic use. The proper quality of the charcoals was attested by high apparent density (≈ 0.568 g/cm3), high fixed carbon (≈ 87.2%), low volatile matter (≈ 11.7%), low ash content (≈ 1.0%) and high higher heating value (≈ 32,925.40 kJ/kg). The charcoal of the brand B showed better quality considering significant higher average apparent density, no outlier of ash content above the maximum ideal value and overall lower variability within and among packages of the properties. The apparent density greatly varied among packages, while a greater variation within packages was observed for the other properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Society for Testing and Materials (ASTM). (2013). Standard test method for chemical analysis of wood charcoal (D 1762-84). West Conshohocken: ASTM International.

    Google Scholar 

  • Assis, M. R., Brancheriau, L., Napoli, A., & Trugilho, P. F. (2016). Factors affecting the mechanics of carbonized wood: literature review. Wood Science and Technology,50(3), 519–536.

    CAS  Google Scholar 

  • Botelho, A., Lourenço-Gomes, L., & Pinto, L. (2016). Using stated preference methods to assess environmental impacts of forest biomass power plants in Portugal environment. Development and Sustainability,18(5), 1323–1337.

    Google Scholar 

  • Brahan, W. K. (2002). Combustibilidad de la madera: La experiência com espécies colombianas. Bogotá: Fondo de Publicaciones.

    Google Scholar 

  • Brand, M. A., Rodrigues, A. A., Oliveira, A., Machado, M. S., & Zen, L. R. (2015). Quality of charcoal for domestic consumption marketed in the southern highlands region of Santa Catarina. Revista Árvore,39(6), 1165–1173.

    Google Scholar 

  • Brazilian Association of Technical Standards (ABNT). (2003a). Wood—Determination of basic density (NBR 11941). Rio de Janeiro: ABNT.

    Google Scholar 

  • Brazilian Association of Technical Standards (ABNT). (2003b). Wood—Determination of moisture of chips (NBR 14929). Rio de Janeiro: ABNT.

    Google Scholar 

  • Brazilian tree industry (IBA). (2016). Annual report. http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2016_.pdf. Accessed 20 June 2018.

  • Castro, A. F. N. M., Castro, R. V. O., de Carneiro, A. C. O., dos Santos, R. C., Carvalho, A. M. M. L., Trugilho, P. F., et al. (2016). Correlations between age, wood quality and charcoal quality of eucalyptus clones. Revista Árvore,40(3), 551–560.

    Google Scholar 

  • Choi, J., Shin, S.-J., & Kim, B.-R. (2015). A fundamental study for the possibility of charcoal as green infrastructure materials. Journal of the Korean Wood Science and Technology,43(5), 691–699.

    Google Scholar 

  • Chowdhury, Z. Z., Karim, M. Z., Ashraf, A. M., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources,11(2), 3356–3372.

    CAS  Google Scholar 

  • Coordination Department for Agribusiness Development (CODEAGRO). (2015). Standard for charcoal (PMQ 3-03). São Paulo: Codeagro.

    Google Scholar 

  • Cordero, T., Marquez, F., Rodriguez-Mirasol, J., & Rodriguez, J. J. (2001). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel,80, 1567–1571.

    CAS  Google Scholar 

  • Costa, T. G., Bianchi, M. L., Protásio, T. D. P., Trugilho, P. F., & Pereira, A. J. (2014). Wood quality of five species from Cerrado for production of charcoal. Cerne,20(1), 37–46.

    Google Scholar 

  • Delmastro, C., Lavagno, E., & Mutani, G. (2015). Chinese residential energy demand: scenarios to 2030 and policies implication. Energy and Buildings,89, 46–60.

    Google Scholar 

  • Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management,42(11), 1357–1378.

    CAS  Google Scholar 

  • Dias Júnior, A. F., Andrade, C. R., Brito, J. O., & Milan, M. (2015a). Quality function deployment (QFD) in the evaluation of charcoal quality used for food cooking. Floresta e Ambiente,22(2), 262–270.

    Google Scholar 

  • Dias Júnior, A. F., Brito, J. O., & Andrade, C. R. (2015b). Granulometric influence on the combustion of charcoal for barbecue. Revista Árvore,39(6), 1127–1133.

    Google Scholar 

  • Elaieb, M. T., Khouaja, A., Khouja, M. L., Valette, J., Volle, G., & Candelier, K. (2018). Comparative study of local tunisian woods properties and the respective qualities of their charcoals produced by a new industrial eco-friendly carbonization process. Waste and Biomass Valorization,9(7), 1199–1211.

    CAS  Google Scholar 

  • Ferreira, J. E. V., Miranda, R. M., Figueiredo, A. F., Barbosa, J. P., & Brasil, E. M. (2016). Box-and-whisker plots applied to food chemistry. Journal of Chemical Education,93(12), 2026–2032.

    CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (1985). Chapter 2: Wood carbonisation and the products it yields. http://www.fao.org/docrep/x5555e/x5555e03.htm#. Accessed 22 Sept 2017.

  • Friedl, A., Padouvas, E., Rotter, H., & Varmuza, K. (2005). Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta,544, 191–198.

    CAS  Google Scholar 

  • Garcia, D. P., Rodrigues, C. R., Dal Bem, E. A., & Ferreira, J. P. (2017). Charcoal quality for domestic use. Brazilian Journal of Biosystems Engineering,11(1), 59–67.

    Google Scholar 

  • Gomes, M. T. M., Silva, M. L., Valverde, S. R., Jacovine, L. A. G., Soares, N. S., & Pires, V. A. V. (2007). Diagnostic of the metallurgical industry in Minas Gerais. Cerne,13, 60–66.

    Google Scholar 

  • Jurena, T., & Hajek, J. (2011). Energy considerations in CDF modeling of biomass. Chemical Engineering Transactions,25(7–8), 803–808.

    Google Scholar 

  • Katesa, J., Junpiromand, S., & Tangsathitkulchai, C. (2010). Effect of carbonization temperature on properties of char and activated carbon from coconut shell. Suranaree Journal of Science and Technology,20(4), 269–278.

    Google Scholar 

  • Katyal, S., Thambimuthu, K., & Valix, M. (2003). Carbonisation of bagasse in a fixed bed reactor: Influence of process variables on char yield and characteristics. Renewable Energy,28(5), 713–725.

    CAS  Google Scholar 

  • Lori, J. A., Lawal, O., & Ekanem, E. J. (2007). Proximate and ultimate analysis of bagasse, sorghum and millet straws as precursors for activated carbons. Journal of Applied Sciences,7(21), 2008.

    Google Scholar 

  • Medeiros Neto, P. N., Oliveira, E., & Paes, J. B. (2014). Relationship between the characteristics of wood and charcoal of two Caatinga tree species. Floresta e Ambiente,21(4), 484–493.

    Google Scholar 

  • Mermoud, F., Salvador, S., Van de Steene, L., & Golfier, F. (2006). Influence of the pyrolysis heating rate on the steam gasification rate of large wood char particles. Fuel,85(10–11), 1473–1482.

    CAS  Google Scholar 

  • Morettin, P. A., & Bussab, W. O. (2010). Estatística básica. São Paulo: Saraiva.

    Google Scholar 

  • Moutinho, V. H. P., Tomazello Filho, M., Brito, J. O., Ballarin, A. W., Carvalho, F. W. A., & Cardoso, C. D. C. (2017). Characterization and statistical correlation between charcoal’s physical and mechanical properties of Eucalyptus and Corymbia clones. Ciência Florestal,27(3), 1095–1103.

    Google Scholar 

  • National Institute of Meteorology (INMET). (2017). Historical data. http://www.inmet.gov.br/sonabra/pg_dspDadosCodigo_sim.php?QTI0OQ==. Accessed 21 Sept 2017.

  • Protásio, T. P., Bufalino, L., Mendes, R. F., Ribeiro, M. X., Trugilho, P. F., & da Leite, E. R. S. (2012). Torrefaction and carbonization of briquettes made with residues from coffee grain. BioResources,8(1), 1166–1185.

    Google Scholar 

  • Protásio, T. P., Bufalino, L., Tonoli, G. H. D., Guimarães Junior, M., Trugilho, P. F., & Mendes, L. M. (2013). Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. Brazilian Journal of Agricultural and Environmental Engineering,16(11), 1252–1258.

    Google Scholar 

  • Protásio, T. D. P., Guimarães Junior, M., Mirmehdi, S., Trugilho, P. F., Napoli, A., & Knovack, K. M. (2017). Combustion of biomass and charcoal made from babassu nutshell. Cerne,23(1), 1–10.

    Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 2 Jan 2018.

  • Rosa, R. A., Arantes, M. D. C., Paes, J. B., Andrade, W. S. D. P., & Moulin, J. C. (2012). Quality of charcoal for domestic consumption. Revista Árvore,3(2), 41–48.

    CAS  Google Scholar 

  • Samohyl, R. W. (2009). Controle Estatístico de Qualidade. Rio de Janeiro: Elsevier.

    Google Scholar 

  • Santos, R. C., Carneiro, A. C. O., Castro, A. F. M., Castro, R. V. O., Bianche, J. J., Souza, M. M., et al. (2011). Correlation of quality parameters of wood and charcoal of clones of eucalyptus. Scientia Forestalis,39(90), 221–230.

    Google Scholar 

  • Silva, M. C., Numazawa, S., Araujo, M. M., Nagaish, T. Y. R., & Galvão, G. R. (2007). Charcoal from timber industry residues of three tree species logged in the municipality of Paragominas, PA. Acta Amazonica, 37(1), 61–70.

    Google Scholar 

  • Soares, V. C., Bianchi, M. L., Trugilho, P. F., Pereira, A. J., & Höfler, J. (2014). Correlations between the properties of eucalyptus hybrids wood and charcoal. Revista Árvore,38(3), 543–549.

    Google Scholar 

  • Souza, N. D., Amodei, J. B., Xavier, C. N., Dias Júnior, A. F., & Carvalho, A. M. (2016). Case study of a carbonization plant: Evaluation of features and quality of charcoal aiming steel use. Floresta e Ambiente,23(2), 270–277.

    Google Scholar 

  • Trugilho, P. F., da Silva, J. R. M., Mori, F. A., Lima, J. T. L., Mendes, L. M., & de Mendes, L. F. B. (2005). Rendimentos e características do carvão vegetal em função da posição radial de amostragem em clones de Eucalyptus. Cerne,11(2), 178–186.

    Google Scholar 

  • Vilas Boas, M. A., Carneiro, A. D. C. O., Vital, B. R., Carvalho, A. M. M. L., & Martins, M. A. (2010). Effect of carbonization temperature and the macaúba residues in the production of charcoal. Scientia Forestalis,38(87), 481–490.

    Google Scholar 

  • Xu, J., Li, M., & Ni, T. (2015). Feedstock for bioethanol production from a technological paradigm perspective. BioResources,10(3), 6285–6340.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by Agricultural Research Corporation of Amapá (EMBRAPA-Amapá) and the State University of Amapá (UEAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Bufalino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Rosário da Silva e Silva, M., dos Santos Ribeiro, E.A., Barbosa, J.P. et al. Quality attributes of commercial charcoals produced in Amapá, a Brazilian state located in the Amazonia. Environ Dev Sustain 22, 719–732 (2020). https://doi.org/10.1007/s10668-018-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0216-x

Keywords

Navigation