Skip to main content

Advertisement

Log in

A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The carbon emissions in service sectors have attracted increasing attention around the world. However, few studies have examined the driving forces for CO2 emissions from service sectors in developing countries. With the process of accelerating industrialization, China’s service sectors are facing growing pressure to pursue energy savings and emission reductions, especially in several developed regions. In this paper, in order to better understand how CO2 emissions in Beijing’s service sectors have evolved, we utilized a subsystem input–output decomposition analysis to study the pattern and driving factors of consumption-based emissions in Beijing’s service sectors. The results showed that the transportation sector and the Scientific Studies Technical Services sector caused the most CO2 emissions in Beijing’s service sectors. The emission intensity effect potentially reduced CO2 emissions by 10,833 Mt, primarily due to the decreased energy intensity of non-service sectors. Effects of demand and technology were mainly responsible for the increased CO2 emissions in Beijing’s service sectors. Such influence was mainly related to the external component of service sectors, indicating a strong pull effect exerted by service sectors on non-service sectors. Thus, decarbonizing the supply chain of service sectors and improving the energy intensity are necessary to alleviate CO2 emissions in Beijing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcántara, V., & Padilla, E. (2009). Input-output subsystems and pollution: an application to the service sector and CO2 emissions in Spain. Ecological Economics, 68(3), 905–914.

    Article  Google Scholar 

  • Baiocchi, G., & Minx, J. C. (2010). Understanding changes in the UK’s CO2 emissions: a global perspective. Environmental Science Technology, 44(4), 1177–1184.

    Article  CAS  Google Scholar 

  • Bastianoni, S., Pulselli, F. M., & Tiezzi, E. (2004). The problem of assigning responsibility for greenhouse gas emissions. Ecological Economics, 49(3), 253–257.

    Article  Google Scholar 

  • Beijing Bureau of Statistics. (2006). Beijing statistical yearbooks. Beijing: China Statistical Press.

    Google Scholar 

  • Beijing Bureau of Statistics. (2008). Beijing statistical yearbooks. Beijing: China Statistical Press.

    Google Scholar 

  • Beijing Bureau of Statistics. (2011). Beijing statistical yearbooks. Beijing: China Statistical Press.

    Google Scholar 

  • Beijing Bureau of Statistics. (2013). Beijing statistical yearbooks. Beijing: China Statistical Press.

    Google Scholar 

  • Butnar, I., & Llop, M. (2011). Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000–2005). Ecological Economics, 70(11), 2012–2019.

    Article  Google Scholar 

  • Cardenete, M. A., & Fuentes, P. (2011). Energy consumption and CO2 emissions in the Spanish economy. In M. Llop (Ed.), Air pollution: Measurements and control policies. Sharjah: Bentham E-Books.

    Google Scholar 

  • Chen, G. Q., Guo, S., Shao, L., Li, J. S., & Chen, Z. M. (2013). Three-scale input–output modeling for urban economy: Carbon emission by Beijing 2007. Communications in Nonlinear Science and Numerical Simulation, 18(9), 2493–2506.

    Article  Google Scholar 

  • Chen, G. Q., & Zhang, B. (2010). Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy, 38(10), 6180–6193.

    Article  CAS  Google Scholar 

  • Davis, S. J., & Caldeira, K. (2010). Consumption-based accounting of CO2 emissions. Proceeding of the National Academy Sciences, 107(12), 5687–5692.

    Article  CAS  Google Scholar 

  • Deprez, J. (1990). Vertical integration and the problem of fixed capital. Journal of Post Keynesian Economics, 13(1), 47–64.

    Article  Google Scholar 

  • Dietzenbacher, E., & Los, B. (2000). Structural decomposition with dependent determinants. Economics Systems Research, 12(4), 497–514.

    Article  Google Scholar 

  • Fan, F. Y., & Lei, Y. L. (2016). Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Decomposition Analysis of Energy-Related Carbon Emissions From the Transportation Sector in Beijing, 42(1), 135–145.

    Google Scholar 

  • Feng, Y. Y., Chen, S. Q., & Zhang, L. X. (2013). System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecological Modelling, 252(10), 44–52.

    Article  Google Scholar 

  • Fourcroy, C., Gallouja, F., & Decellasb, F. (2012). Energy consumption in the service industry: Challenging the myth of non-materiality. Ecological Economics, 81(9), 155–164.

    Article  Google Scholar 

  • Geng, Y., Zhao, H., Liu, Z., Xue, B., Fujita, T., & Xi, F. M. (2013). Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning. Energy Policy, 60(9), 820–826.

    Article  Google Scholar 

  • Gui, S., Mu, H. L., & Li, N. (2014). Analysis of impact factors on China’s CO2 emissions from the view of supply chain paths. Energy, 74(1), 405–416.

    Article  Google Scholar 

  • Guo, S., Shao, L., Chen, H., Li, Z., Liu, J. B., Xu, F. X., et al. (2012). Inventory and input–output analysis of CO2 emissions by fossil fuel consumption in Beijing 2007. Ecological Informatics, 12(11), 93–100.

    Article  Google Scholar 

  • Hertwich, E. G., & Peters, G. P. (2009). Carbon footprint of nations: A global, trade-linked analysis. Environmental Science Technology, 43(16), 6414–6420.

    Article  CAS  Google Scholar 

  • Hoekstra, R., & Van Den Bergh, J. C. J. M. (2003). Comparing structural decomposition analysis and index. Engineering Economics, 25(1), 39–64.

    Google Scholar 

  • IPCC. (2006). IPCC third assessment report: Climate change 2006. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lenzen, M. (2011). Aggregation versus disaggregation in input-output analysis of the environment. Economic Systems Resarch, 23(1), 73–89.

    Article  Google Scholar 

  • Li, R. P., Mao, H. J., Wu, L., He, J. J., Ren, P. P., & Li, X. Y. (2016). The evaluation of emission control to PM concentration during Beijing APEC in 2014. Atmospheric Pollution Research, 7(2), 363–369.

    Article  Google Scholar 

  • Liu, L. (2013) Annual report on environment development of China, Beijing.

  • Liu, Z., Geng, Y., Lindner, S., Zhao, H. Y., Fujita, T., & Guan, D. B. (2012a). Embodied energy use in China’s industrial sectors. Energy Policy, 49(10), 751–758.

    Article  Google Scholar 

  • Liu, Y., He, K. B., Li, S. S., Wang, Z. X., Christiani, D. C., & Koutrakis, P. (2012b). A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games. Environmental International, 44(1), 100–105.

    Article  Google Scholar 

  • Mairet, N., & Decellas, F. (2009). Determinants of energy demand in the French service sector: A decomposition analysis. Energy Policy, 37(7), 2734–2744.

    Article  Google Scholar 

  • Martínez, C. I. P. (2013). An analysis of eco-efficiency in energy use and CO2 emissions in the Swedish the service industry. Socio-Economic Planning Sciences, 47(2), 120–130.

    Article  Google Scholar 

  • Meng, J., Liu, J. F., Guo, S., Huang, Y., & Tao, S. (2015). The impact of domestic and foreign trade on energy-related PM emissions in Beijing. Applied Energy (in press).

  • Meng, J., Liu, J. F., Guo, S., Li, J. H., Li, Z., & Tao, S. (2016). Trend and driving forces of Beijing’s black carbon emissions from sectoral perspectives. Journal of Cleaner Production, 112(20), 1271–1281.

    Google Scholar 

  • Mi, Z. F., Pan, S. Y., Yu, H., & Wei, Y. M. (2016). Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. Journal of Cleaner Production, 103(15), 455–462.

    Google Scholar 

  • Mulder, P., de Groot, H. L. F., & Pfeiffer, B. (2014). Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005. Ecological Economics, 100(4), 1–15.

    Article  Google Scholar 

  • Munksgaard, J., & Pedersen, K. A. (2001). CO2 accounts for open economies: producer or consumer responsibility? Energy Policy, 29(4), 327–334.

    Article  Google Scholar 

  • Pasinetti, L. (1973). The notion of vertical integration in economic analysis. Metroeconomica, 25(1), 1–29.

    Article  Google Scholar 

  • Pasinetti, L. (1988). Growing subsystems, vertically hyper-integrated sectors and the labour theory of value. Cambridge Journal of Economics, 12(1), 125–134.

    Article  Google Scholar 

  • Peters, G. P., & Hertwich, E. G. (2006). Pollution embodied in trade: the Norwegian case. Global Environmental Change, 16(4), 379–387.

    Article  Google Scholar 

  • Peters, G. P., & Hertwich, E. G. (2008). CO2 embodied in international trade with implications for global climate change. Environmental Science Technology, 42(5), 1401–1407.

    Article  CAS  Google Scholar 

  • Sánchez-Choliz, J., & Duarte, R. (2003). Analysing pollution by vertically integrated coefficients, with an application to the water sector in Aragon. Cambridge Journal Economics, 27(3), 433–448.

    Article  Google Scholar 

  • Say, J. B. (1972). Traité d’économie politique. Paris: Calmann-Levy.

    Google Scholar 

  • Scazzieri, R. (1993). Vertical integration in economic theory. J Post Keynesian Econ, 13(1), 20–46.

    Article  Google Scholar 

  • Schleich, J. (2009). Barriers to energy efficiency: A comparison across the German commercial and service sector. Ecological Economics, 68(7), 2150–2159.

    Article  Google Scholar 

  • Sismondi, J. S. D. (1971). Sismondi Nouveaux principes d’économie politique ou De la richesse dans ses rapports avec la population. Paris: Calmann-Levy.

    Google Scholar 

  • Smith, A. (1970). The wealth of nations, book 2. Londres: Editions Penguin Books.

    Google Scholar 

  • Sraffa, P. (1960). Production of commodities by means of commodities. Cambridge: Cambridge University Press.

    Google Scholar 

  • Su, B., & Ang, B. W. (2012). Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Economics, 34(1), 177–188.

    Article  Google Scholar 

  • Su, B., & Ang, B. W. (2013). Input-output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports. Energy Policy, 56(5), 83–87.

    Article  Google Scholar 

  • Su, B., & Ang, B. W. (2014). Attribution of changes in the generalized Fisher index with application to embodied emission studies. Energy, 69(1), 778–786.

    Article  Google Scholar 

  • Su, B., & Ang, B. W. (2015). Multiplicative decomposition of aggregate carbon intensity change using input–output analysis. Applied Energy, 154(15), 13–20.

    Article  CAS  Google Scholar 

  • Su, B., Huang, H. C., Ang, B. W., & Zhou, P. (2010). Input–output analysis of CO2 emissions embodied in trade: The effects of sector aggregation. Energy Economics., 32(1), 166–175.

    Article  Google Scholar 

  • Tian, X., Chang, M., Tanikawa, H., Shi, F., & Imura, H. (2013). Structural decomposition analysis of the carbonization process in Beijing: A regional explanation of rapid increasing carbon dioxide emission in China. Energy Policy, 53(2), 279–286.

    Article  CAS  Google Scholar 

  • United Nations. (1999). Handbook of input–output table compilation and analysis. New York: Handbook of National Accounting.

    Google Scholar 

  • Wang, Z. H., Bao, Y. H., Wen, Z. G., & Tan, Q. L. (2016). Analysis of relationship between Beijing’s environment and development based on Environmental Kuznets Curve. Ecological Indicators, 67(8), 474–483.

    Article  CAS  Google Scholar 

  • Wang, Z. H., & Liu, W. (2015). Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives. Applied Energy, 158(15), 292–299.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, H. Y., Li, L. Y., Liu, Z., & Liang, S. (2013). Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy, 58(6), 312–318.

    Article  CAS  Google Scholar 

  • Wei, J., Huang, K., Yang, S. S., Li, Y., Hu, T. T., & Zhang, Y. (2016). Driving forces analysis of energy-related carbon emissions (CO2) emissions in Beijing: An input-output structural decomposition analysis. Journal of Cleaner Production (in press).

  • Wiedmann, T., Wood, R., Minx, J. C., Lenzen, M., Guan, D. B., & Harris, R. (2010). A carbon footprint time series of the UK-results from a multi-region input–output model. Economics Systems Research, 22(1), 19–42.

    Article  Google Scholar 

  • Xia, X. H., Hu, Y., Alsaedi, A., Hayat, T., Wu, X. D., & Chen, G. Q. (2015). Structure decomposition analysis for energy-related GHG emission in Beijing: Urban metabolism and hierarchical structure. Ecological Informatics, 26(1), 60–69.

    Article  Google Scholar 

  • Xie, S. C. (2014). The driving forces of China’s energy use from 1992 to 2010: An empirical study of input-output and structural decomposition analysis. Energy Policy, 73(10), 401–415.

    Article  Google Scholar 

  • Xu, M., Li, R., Crittenden, J. C., & Chen, Y. S. (2011). CO2 emissions embodied in China’s exports from 2002 to 2008: A structural decomposition analysis. Energy Policy, 39(11), 7381–7388.

    Article  CAS  Google Scholar 

  • Yang, S. Y., Fath, B., & Chen, B. (2016) Ecological network analysis of embodied particulate matter 2.5—A case study of Beijing. Applied Energy (in press).

  • Yang, Y. Y., Zhao, T., Wang, Y. N., & Shi, Z. H. (2015). Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environmental Impact Assessment Review, 55(11), 45–53.

    Article  Google Scholar 

  • Zhang, W. C., Peng, S. J., & Sun, C. W. (2015). CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input-output model. Energy Policy, 86(11), 93–103.

    Article  CAS  Google Scholar 

  • Zhang, W. H., Yin, F. C., Zhang, Y. X., & Zhang, X. (2012). An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city. China. Applied Energy, 100(12), 277–284.

    Google Scholar 

  • Zhang, J. Y., Zhang, Y., Yang, Z. F., Fath, B. D., & Li, S. S. (2013). Estimation of energy-related carbon emissions in Beijing and factor decomposition analysis. Ecological Modelling, 252(10), 258–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 71373172) and the Humanities and Social Science Planning Fund Project of Ministry of Education (No. 15YJA790091). We especially thank the anonymous reviewers for their insightful comments and suggestions. All remaining errors are ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Zhao, T. & Xu, J. A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China. Environ Dev Sustain 19, 2181–2198 (2017). https://doi.org/10.1007/s10668-016-9847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9847-y

Keywords

Navigation