Skip to main content

Advertisement

Log in

Modelling Long-Term Variability in Daily Air Temperature Time Series for Southern Hemisphere Stations

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Customarily, climate studies of long-range temperature variability have been carried out using annual or monthly averages. The approach mixes the details of short- and long-range variability that are different for air temperature series. This work shows that a useful method for eliminating short-range variability on long-range variability is to apply a sufficiently long (about 2 months) time step to the daily series. An autoregressive integrated moving average model is fitted to daily maximum and minimum temperature anomalies from the mean seasonal cycle, using data from a number of Australian and New Zealand weather stations. The fitted model can be considered as a sum of random walk plus white noise. This enables us to obtain a quantitative long-term description of the temperature variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beran, J. (1994). Statistics for long memory processes. New York: Chapman and Hall.

    Google Scholar 

  2. Box, J. E. P., & Jenkins, G. (1970). Time series analysis, forecasting and control. San Francisco: Holden Day.

    Google Scholar 

  3. Gordon, A. H. (1991). Global warming as a random walk. Journal of Climate, 4, 589–597.

    Article  Google Scholar 

  4. Grieser, J., Trömel, S., & Schönwiese, C.-D. (2002). Statistical Time series decomposition into significant components and application to European temperature. Theoretical and Applied Climatology, 71, 171–183.

    Article  Google Scholar 

  5. Hansen, J., Lacis, A., Ruedy, R., Sato, M., & Wilson, H. (1993). How sensitive is the world’s climate? National Geographic Research Exploration, 9, 142–158.

    Google Scholar 

  6. Hessell, J. W. D. (1979). The use of long time series climatological observations to determine climatic trends. New Zealand Geographer, 35, 80–82.

    Article  Google Scholar 

  7. Hessell, J. W. D. (1980). Apparent trends of mean temperature in New Zealand since 1930. New Zealand Journal of Science, 23, 1–9.

    Google Scholar 

  8. Kane, R. P., & Teixeira, N. R. (1990). Power spectrum analysis of the time series of annual mean surface air temperatures. Climatic Change, 17, 121–130.

    Article  Google Scholar 

  9. Kärner, O. (2005). Some examples on negative feedback in the Earth climate system, Central European. Journal of Physics, 3, 190–208.

    Google Scholar 

  10. Kärner, O. (2009). ARIMA representation for daily solar irradiance and surface air temperature time series. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 841–847.

    Article  Google Scholar 

  11. Ladoy, Ph., Lovejoy, S., & Schertzer, D. (1991). Extreme variability of climatological data: Scaling and intermittency. In D. Schertzer, & S. Lovejoy (Eds.), Non-linear variability in geophysics (pp. 241–250). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  12. Lovejoy, S., & Schertzer, D. (1986). Scale invariance in climatological temperatures and the local spectral plateau. Annals of Geophysics, 4B, 401–410.

    Google Scholar 

  13. Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: Freeman

    Google Scholar 

  14. Mills, T. C. (2007). Time series modeling of two millennia of northern hemisphere temperatures: Long memory or shifting trends. Journal of the Royal Statistical Society. Series A, 170(1), 83–94.

    Google Scholar 

  15. Monin, A. S., & Yaglom, A. M. (1975). Statistical fluid mechanics (Vol. 2). Boston: MIT.

    Google Scholar 

  16. North, G. R., & Cahalan, R. F. (1981). Predictability in a solvable stochastic climate model. Journal of the Atmospheric Sciences, 38, 504–513.

    Article  Google Scholar 

  17. Taqqu, M. S., & Teverovsky, V. (1998). On estimating the intensity of long-range dependence in finite and infinite variance time series. In R. Adler, R. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails: Statistical techniques and applications (pp. 177–217). Boston: Birkhauser.

    Google Scholar 

  18. Taylor, G. I. (1935). Statistical theory of turbulence, parts I to IV. Proceedings of the Royal Society of London, A151, 421–478.

    Google Scholar 

  19. Withers, C. S., Krouse, D. P., Pearson, C. P., & Nadarajah, S. (2009). Modelling temperature trends in New Zealand. Environmental Modeling & Assessment, 14, 231–249.

    Article  Google Scholar 

  20. Zheng, X., & Basher, R. E. (1998). Structural time series models and trend detection in global and regional temperature series. Journal of Climate, 12, 2347–2358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olavi Kärner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kärner, O., de Freitas, C.R. Modelling Long-Term Variability in Daily Air Temperature Time Series for Southern Hemisphere Stations. Environ Model Assess 17, 221–229 (2012). https://doi.org/10.1007/s10666-011-9269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9269-z

Keywords

Navigation