Skip to main content
Log in

A stochastic model for the analysis of maximum daily temperature

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this paper, a stochastic model for the analysis of the daily maximum temperature is proposed. First, a deseasonalization procedure based on the truncated Fourier expansion is adopted. Then, the Johnson transformation functions were applied for the data normalization. Finally, the fractionally autoregressive integrated moving average model was used to reproduce both short- and long-memory behavior of the temperature series. The model was applied to the data of the Cosenza gauge (Calabria region) and verified on other four gauges of southern Italy. Through a Monte Carlo simulation procedure based on the proposed model, 105 years of daily maximum temperature have been generated. Among the possible applications of the model, the occurrence probabilities of the annual maximum values have been evaluated. Moreover, the procedure was applied for the estimation of the return periods of long sequences of days with maximum temperature above prefixed thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike H (1974) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60:255–265

    Article  Google Scholar 

  • Alonso AM, Peña D, Romo J (2002) Forecasting time series with sieve bootstrap. J Stat Plan Infer 100:1–11

    Article  Google Scholar 

  • Alonso AM, Peña D, Romo J (2003) On sieve bootstrap prediction intervals. Statist Probab Lett 65:13–20

    Article  Google Scholar 

  • Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann Math Stat 23:193–212

    Article  Google Scholar 

  • Anderson TW, Olkin I (1985) Maximum-likelihood estimation of the parameters of a multivariate normal distribution. Linear Algebra Appl 70:147–171

    Article  Google Scholar 

  • Baillie RT, Chung S (2002) Modeling and forecasting from trend-stationary long memory models with applications to climatology. Int J Forecasting 18:215–226

    Article  Google Scholar 

  • Bechini L, Bocchi S, Maggiore T, Confalonieri R (2006) Parameterization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environ Model Softw 21:1042–1054

    Article  Google Scholar 

  • Bisaglia L, Grigoletto M (2001) Prediction intervals for FARIMA processes by bootstrap methods. J Stat Comput Simul 68:185–201

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis forecasting and control. Holden-Day

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Buttafuoco G, Caloiero T, Coscarelli R (2015) Analyses of drought events in Calabria (southern Italy) using standardized precipitation index. Water Resour Manag 29:557–573

    Article  Google Scholar 

  • Caballero R, Jewson S, Brix A (2002) Long memory in surface air temperature: detection, modeling, and application to weather derivative valuation. Clim Res 21:127–140

    Article  Google Scholar 

  • Caldiz DO, Gaspari FJ, Haverkort AJ, Struik PC (2001) Agro-ecological zoning and potential yield of single or double cropping of potato in Argentina. Agric For Meteorol 109:311–320

    Article  Google Scholar 

  • Caloiero T, Coscarelli R, Ferrari E, Sirangelo B (2015a) Analysis of dry spells in southern Italy (Calabria). Water 7:3009–3023

    Article  Google Scholar 

  • Caloiero T, Buttafuoco G, Coscarelli R, Ferrari E (2015b) Spatial and temporal characterization of climate at regional scale using homogeneous monthly precipitation and air temperature data: an application in Calabria (southern Italy). Hydrol Res 46:629–646

    Article  Google Scholar 

  • Caloiero T, Callegari G, Cantasano N, Coletta V, Pellicone G, Veltri A (2015c) Bioclimatic analysis in a region of southern Italy (Calabria). Plant Biosystems, in press, doi:10.1080/11263504.2015.1037814

  • Campbell SD, Diebold FX (2005) Weather forecasting for weather derivatives. J Am Stat Assoc 100:6–16

    Article  Google Scholar 

  • Chen SS, Gopinath RA (2000) Gaussianization. Adv Neural Comput Syst 13:423–429

    Google Scholar 

  • Coscarelli R, Caloiero T (2012) Analysis of daily and monthly rainfall concentration in southern Italy (Calabria region). J Hydrol 416–417:145–156

    Article  Google Scholar 

  • Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155:80–87

    Article  Google Scholar 

  • Doukhan P, Oppenheim G, Taqqu MS (2003) Theory and application of long-range dependence. Birkhäuser, Boston

    Google Scholar 

  • Ehsanzadeh E, Adamowski K (2010) Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence. Hydrol Process 24:970–980

    Article  Google Scholar 

  • Ferrari E, Caloiero T, Coscarelli R (2013) Influence of the North Atlantic oscillation on winter rainfall in Calabria (southern Italy). Theor Appl Climatol 114:479–494

    Article  Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long-range time series models and fractional differencing. J Time Ser Anal 1:15–30

    Article  Google Scholar 

  • Grimaldi S (2004) Linear parametric models applied on daily hydrological series. J Hydrolog Eng 9:383–391

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F, Tallerini C (2005) Multivariate linear parametric models applied to daily rainfall time series. Adv Geosc 2:87–92

    Article  Google Scholar 

  • Hajat S, Kovats RS, Atkinson RW, Haines A (2002) Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health 56:367–372

    Article  Google Scholar 

  • Hólm E, Andersson E, Beljaars A, Lopez P, Mahfouf JF, Simmons AJ, Thépaut JN (2002) Assimilation and modelling of the hydrological cycle: ECMWF’s status and plans. ECMWF Tech Memo 383, Reading

  • Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176

    Article  Google Scholar 

  • Hosking JRM (1984) Modeling persistence in hydrological time series using fractional differencing. Water Resour Res 20:1898–1908

    Article  Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116:770–799

    Google Scholar 

  • Jewson S, Caballero R (2003) Seasonality in the statistics of surface air temperature and the pricing of weather derivatives. Meteorol Appl 10:367–376

    Article  Google Scholar 

  • Johnson NL (1949) Systems of frequency curves generated by methods of translation. Biometrika 36:149–176

    Article  Google Scholar 

  • Keellings D, Waylen P (2012) The stochastic properties of high daily maximum temperatures applying crossing theory to modeling high-temperature event variables. Theor Appl Climatol 108:579–590

    Article  Google Scholar 

  • Kendall MG (1962) Rank correlation methods. Hafner Publishing Company, New York

    Google Scholar 

  • Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120–137

    Article  Google Scholar 

  • Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrolog Sci J 47:573–595

    Article  Google Scholar 

  • Kunst AE, Looman CWN, Mackenbach JP (1993) Outdoor air temperature and mortality in the Netherlands: a time-series analysis. Am J Epidemiol 137:331–341

    Article  Google Scholar 

  • Lee T (2015) Stochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis. Theor Appl Climatol. doi:10.1007/s00704-015-1395-0

    Google Scholar 

  • Lohre M, Sibbertsen P, Könning T (2003) Modeling water flow of the Rhine River using seasonal long memory. Water Resour Res 39:1132

    Article  Google Scholar 

  • Lye LM, Lin Y (1994) Long-term dependence in annual peak flows of Canadian rivers. J Hydrol 160:89–103

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (1997) Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation, and simulation. Water Resour Res 33:1035–1044

    Article  Google Scholar 

  • Montanari A, Rosso R, Taqqu MS (2000) A seasonal fractional ARIMA model applied to the Nile River monthly flows at Aswan. Water Resour Res 36:1249–1259

    Article  Google Scholar 

  • Pelletier JD, Turcotte DL (1997) Long-range persistence in climatological and hydrological time series: analysis, modeling and application to drought hazard assessment. J Hydrol 203:198–208

    Article  Google Scholar 

  • Prass TS, Bravo JM, Clarke RT, Collischonn W, Lopes SRC (2012) Comparison of forecasts of mean monthly water level in the Paraguay River, Brazil, from two fractionally differenced models. Water Resour Res 48:W05502

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190

    Article  Google Scholar 

  • Rupasinghe M, Mukhopadhyayb P, Samaranayakec VA (2014) Obtaining prediction intervals for FARIMA processes using the sieve bootstrap. J Stat Comput Sim 84:2044–2058

    Article  Google Scholar 

  • Rupasinghe M, Samaranayake VA (2012) Asymptotic properties of sieve bootstrap prediction intervals for FARIMA processes. Statist Probab Lett 82:2108–2114

    Article  Google Scholar 

  • Servidio S, Greco A, Matthaeus WH, Osman KT, Dmitruk P (2011) Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J Geophys Res 116:A09102

    Article  Google Scholar 

  • Sheng H, Chen YQ (2011) FARIMA with stable innovations model of Great Salt Lake elevation time series. Signal Process 91:553–561

    Article  Google Scholar 

  • Smith RL (1993) Long-range dependence and global warming. In: Barnett V, Turkerman KF (eds) Statistics for the environment. Wiley, New York, pp. 141–146

    Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Iowa City

    Google Scholar 

  • Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat A-Theor 7:13–26

    Article  Google Scholar 

  • Tuenter HJH (2001) An algorithm to determine the parameters of the S U -curves in the Johnson system of probability distributions by moment matching. J Stat Comput Sim 70:325–347

    Article  Google Scholar 

  • Verdoodt A, Van Ranst E, Ye L (2004) Daily simulation of potential dry matter production of annual field crops in tropical environments. Agron J 96:1739–1753

    Article  Google Scholar 

  • Yang G, Bowling LC (2014) Detection of changes in hydrologic system memory associated with urbanization in the Great Lakes region. Water Resour Res 50:3750–3763

    Article  Google Scholar 

  • Ye L, Tang H, Zhu J, Verdoodt A, Van Ranst E (2008) Spatial patterns and effects of soil organic carbon on grain productivity assessment in China. Soil Use Manage 24:80–91

    Article  Google Scholar 

  • Ye L, Van Ranst E (2002) Population carrying capacity and sustainable agricultural use of land resources in Caoxian County (North China). J Sustain Agr 19:75–94

    Article  Google Scholar 

  • Ye L, Van Ranst E (2009) Production scenarios and the effect of soil degradation on long-term food security in China. Global Environ Chang 19:464–481

    Article  Google Scholar 

  • Ye L, Xiong W, Li Z, Yang P, Wu W, Yang G, Fu Y, Zou J, Chen Z, Van Ranst E, Tang H (2013) Climate change impact on China food security in 2050. Agron Sustain Dev 33:363–374

    Article  Google Scholar 

  • Yevjevich V (1972) Structural analysis of hydrologic time series. Hydrol Pap 56, Colorado State University, Fort Collins (CO)

Download references

Acknowledgments

The authors thank the reviewer Salvatore Grimaldi for providing the constructive comments which have contributed to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Coscarelli.

Appendices

Appendix 1: Estimation of the number of harmonics

The hypothesis, H 0 , μ   :  μ Y , 1 = μ Y , 2 =  …  = μ Y , M  = μ Y , can be verified by using the statistics

$$ {S}_V^2={s^{\mathit{{\prime\prime}}}}_Y^2/{s^{\mathit{\prime}}}_Y^2 $$
(A1)

with

$$ {s^{\mathit{\prime}}}_Y^2=\frac{1}{K_{*}-M}{\displaystyle \sum_{m=1}^M\left({N}_m-1\right){s}_{Y,m}^2} $$
(A2)
$$ {s^{\mathit{{\prime\prime}}}}_Y^2=\frac{1}{M-1}{\displaystyle \sum_{m=1}^M{N}_m}{\left({m}_{Y,m}-{m}_Y\right)}^2 $$
(A3)

where \( {s}_{Y,m}^2 \) is the sample variance of the data referred to the m th class, m Y , m is the sample mean of the data referred to the m th class, and m Y is the mean of the whole sample \( y\left({i}_{k_{*}}\right) \). The statistics \( {S}_V^2 \) is approximately distributed according to a Fisher variance-ratio law v 2(f 1, f 2) with f 1 = M − 1 and f 2 = K * − M degrees of freedom. For a significance level α SL, the null hypothesis cannot be refused if \( {S}_V^2<{v}_{1-{\alpha}_{SL}}^2\left({f}_1,{f}_2\right) \), where \( {v}_{1-{\alpha}_{SL}}^2\left({f}_1,{f}_2\right) \) is the 1 − α SL percentile of the ν2 distribution.

The hypothesis \( {H}_{0,{\sigma}^2}\kern0.5em :\kern0.5em {\sigma}_{Y,1}^2={\sigma}_{Y,2}^2=\dots ={\sigma}_{Y,M}^2={\sigma}_Y^2 \) can be verified through the Bartlett’s test (Snedecor and Cochran 1989), based on the statistics

$$ {S}_B^2=\frac{1}{c_B}\left[\left({K}_{*}-M\right) \ln {s^{\mathit{\prime}}}_Y^2-{\displaystyle \sum_{m=1}^M\left({N}_m-1\right) \ln {s}_{Y,m}^2}\right] $$
(A4)

where

$$ {c}_B=1-\frac{1}{3\left(M-1\right)}\left(\frac{1}{K_{*}-M}-{\displaystyle \sum_{m=1}^M\frac{1}{N_m-1}}\right) $$
(A5)

The statistics \( {S}_B^2 \) is approximately distributed according to a χ 2(f 1) law, with f 1 = M − 1 degree of freedom. With a significance level equal to α SL, the hypothesis cannot be rejected if \( {S}_B^2<{\chi}_{1-{\alpha}_{SL}}^2\left({f}_1\right) \), where \( {\chi}_{1-{\alpha}_{SL}}^2\left({f}_1\right) \) is the 1 − α SL percentile of the χ 2distribution.

The smallest values of n h , μ and \( {n}_{h,{\sigma}^2} \), for which both the hypotheses H 0 , μ and \( {H}_{0,{\sigma}^2} \) cannot be rejected, detect the number of harmonics \( {\widehat{n}}_{h,\mu } \) and \( {\widehat{n}}_{h,{\sigma}^2} \) to be used in the truncated Fourier expansion for the functions μ T (i) and \( {\sigma}_T^2(i) \).

Appendix 2: Monte Carlo procedure

The Monte Carlo simulation procedure, used in this work to generate the daily maximum temperature t max (i) series, can be schematized as follows:

  1. 1.

    By using L’Ecuyer random generator, a sequence υ(i), with i = 1 , 2 ,  .  .  .  , L s , of random number uniformly distributed on the interval (0,1) is created.

  2. 2.

    The sequence υ(i) is transformed into a sequence ε(i) of random numbers, distributed according to a normal law, with zero mean and variance \( {\sigma}_{\varepsilon}^2 \), through the Box and Müller technique.

  3. 3.

    According to an \( \mathrm{ARMA}\;\left(\widehat{p},\widehat{q}\right) \) model, initialized with u(i) = 0 and ε(i) = 0 for i ≤ 0, a sequence of numbers is generated,

    $$ \begin{array}{cc}\hfill u(i)={\displaystyle \sum_{k_p=1}^{\widehat{p}}{\widehat{\varphi}}_{k_p}}u\left(i-{k}_p\right)+{\displaystyle \sum_{k_q=0}^{\widehat{q}}{\widehat{\psi}}_{k_q}}\varepsilon \left(i-{k}_q\right)\hfill & \hfill i=1,2,\dots, {L}_s\hfill \end{array} $$
    (B1)
  4. 4.

    By using the series development of the \( {\left(1-B\right)}^{-\widehat{d}} \) operator, the sequence u(i) is transformed into a number sequence z(i) corresponding to the \( \mathrm{FARIMA}\kern0.5em \left(\widehat{p},\widehat{d},\widehat{q}\right) \) model with zero mean and unit variance

    $$ \begin{array}{cc}\hfill z(i)=\frac{1}{\varGamma \left(\widehat{d}\right)}{\displaystyle \sum_{s=0}^{s_{\max }}\frac{\varGamma \left(\widehat{d}+s\right)}{s!}}u\left(i-s\right)\hfill & \hfill i={s}_{\max }+1,\dots, {L}_s\hfill \end{array} $$
    (B2)

    where

    s max is fixed so that \( \varGamma \left(\widehat{d}+{s}_{\max }+1\right)/\left({s}_{\max }+1\right)\kern0.5em !<\xi {\displaystyle {\sum}_{s=0}^{s_{\max }}\varGamma \left(\widehat{d}+s\right)/s!} \), with ξ = 10−4.

    The value of the variance \( {\sigma}_{\varepsilon}^2 \) is fixed in order to obtain \( {\sigma}_Z^2=1 \). If a \( \mathrm{FARIMA}\kern0.5em \left(1,\widehat{d},0\right) \) model is employed, the value for \( {\sigma}_{\varepsilon}^2 \) is

    $$ {\sigma}_{\varepsilon}^2=\frac{\varGamma^2\left(1-\widehat{d}\right)}{\varGamma \left(1-2\widehat{d}\right)}\cdot \frac{1+{\widehat{\varphi}}_1}{{}_2F_1\left(1,1+\widehat{d},1-\widehat{d};{\widehat{\varphi}}_1\right)} $$
    (B3)

    where Γ (.) and 2 F 1(.) indicate the complete gamma function and the hypergeometric function, respectively.

  5. 5.

    The sequence z(i) = s max + 1 ,  .  .  .  , L s is transformed into the sequence y(i) = s max + 1 ,  .  .  .  , L s , by using the inverse function of the unbounded Johnson transformation

    $$ \begin{array}{cc}\hfill y(i)=\widehat{\alpha}+\widehat{\beta} \sinh \left[\frac{z(i)-\widehat{\eta}}{\widehat{\theta}}\right]\hfill & \hfill i={s}_{\max }+1,\dots, {L}_s\hfill \end{array} $$
    (B4)

    or the inverse function of the bounded Johnson transformation

    $$ \begin{array}{cc}\hfill y(i)=\frac{\widehat{\alpha}+\left(\widehat{\alpha}+\widehat{\beta}\right) \exp \left[\frac{z(i)-\widehat{\eta}}{\widehat{\theta}}\right]}{1+ \exp \left[\frac{z(i)-\widehat{\eta}}{\widehat{\theta}}\right]}\hfill & \hfill i={s}_{\max }+1,\dots, {L}_s\hfill \end{array} $$
    (B5)
  6. 6.

    The sequence of daily maximum temperature t max(i) = s max + 1 ,  .  .  .  , L s is obtained as

    $$ \begin{array}{cc}\hfill {t}_{\max }(i)={\mu}_T(i)+{\sigma}_T(i)y(i)\hfill & \hfill i={s}_{\max }+1,\dots, {L}_s\hfill \end{array} $$
    (B6)

    where

    $$ {\mu}_T(i)=\frac{1}{2}{\widehat{a}}_{\mu, 0}+{\displaystyle \sum_{j=1}^{n_{h,\mu }}\left[{\widehat{a}}_{\mu, j} \cos \left(\frac{2\pi \kern0.5em j}{D}i\right)+{\widehat{b}}_{\mu, j} \sin \left(\frac{2\pi \kern0.5em j}{D}i\right)\right]} $$
    (B7)
    $$ {\sigma}_T(i)={\left\{\frac{1}{2}{\widehat{a}}_{\sigma^2,0}+{\displaystyle \sum_{j=1}^{n_{h,{\sigma}^2}}\left[{\widehat{a}}_{\sigma^2,j} \cos \left(\frac{2\pi \kern0.5em j}{D}i\right)+{\widehat{b}}_{\sigma^2,j} \sin \left(\frac{2\pi \kern0.5em j}{D}i\right)\right]}\right\}}^{1/2} $$
    (B8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirangelo, B., Caloiero, T., Coscarelli, R. et al. A stochastic model for the analysis of maximum daily temperature. Theor Appl Climatol 130, 275–289 (2017). https://doi.org/10.1007/s00704-016-1879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1879-6

Keywords

Navigation