Skip to main content
Log in

Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Ferrofluids are typically suspensions of magnetite nanoparticles, and behave as a homogeneous continuum. The ability of the ferrofluid to respond to an external magnetic field in a controllable manner has made it emerge as a smart material in a variety of applications, such as seals, lubricants, electronics cooling, shock absorbers and adaptive optics. Magnetic nanoparticle suspensions have also gained attraction recently in a range of biomedical applications, such as cell separation, hyperthermia, MRI, drug targeting and cancer diagnosis. In this review, we provide an introduction to mathematical modeling of three problems: motion of superparamagnetic nanoparticles in magnetic drug targeting, the motion of a ferrofluid drop consisting of chemically bound nanoparticles without a carrier fluid, and the breakage of a thin film of a ferrofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Liu X, Kaminski MD, Riffle JS, Chen H, Torno M, Finck MR, Taylor L, Rosengart AJ (2007) Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magn Magn Mater 311:84–87

  2. Afkhami S, Tyler AJ, Renardy Y, Renardy M, Woodward RC, Pierre TGSt, Riffle JS, (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384

  3. Balasubramaniam S, Kayandan S, Lin Y, Kelly DF, House MJ, Woodward RC, Pierre TGSt, Riffle JS, Davis RM, (2014) Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir 30(6):1580–1587

  4. Dung NT, Long NV, Tam LTT, Nam PH, Tung LD, Phuc NX, Lu LT, Thanh NTK (2017) High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. Nanoscale 9:8952–8961

    Article  Google Scholar 

  5. Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821

    Article  Google Scholar 

  6. Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  ADS  Google Scholar 

  7. Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172

  8. Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D 42:224003

  9. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24

    Article  Google Scholar 

  10. Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–668

    Article  ADS  Google Scholar 

  11. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review. medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11

    Article  Google Scholar 

  12. Puri IK, Ganguly R (2014) Particle transport in therapeutic magnetic fields. Annu Rev Fluid Mech 46:407–40

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11(4):817–839

    Article  Google Scholar 

  14. Al-Jamal KT, Bai J, Wang JT, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA (2016) Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 16(9):5652–5660

    Article  ADS  Google Scholar 

  15. Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  Google Scholar 

  16. Radon P, Loewa N, Gutkelch D, Wiekhorst F (2017) Design and characterization of a device to quantify the magnetic drug targeting efficiency of magnetic nanoparticles in a tube flow phantom by magnetic particle spectroscopy. J Magn Magn Mater 427:175–180

    Article  ADS  Google Scholar 

  17. Suh YK, Kang S (2011) Motion of paramagnetic particles in a viscous fluid under a uniform magnetic field: benchmark solutions. J Eng Math 69(1):25–58

    Article  MATH  MathSciNet  Google Scholar 

  18. Banerjee Y, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13(4):565–577

    Article  Google Scholar 

  19. van Reenen A, Gao Y, de Jong AM, Hulsen MA, den Toonder JMJ, Prins MWJ (2014) Dynamics of magnetic particles near a surface: model and experiments on field-induced disaggregation. Phys Rev E 89(4):042306

    Article  ADS  Google Scholar 

  20. Tsai SSH, Griffiths IM, Stone HA (2011) Microfluidic immunomagnetic multi-target sorting: a model for controlling deflection of paramagnetic beads. Lab Chip 11:2577–2582

    Article  Google Scholar 

  21. Kang JH, Um E, Diaz A, Driscoll H, Rodas MJ, Domansky K, Watters AL, Super M, Stone HA, Ingber DE (2015) Optimization of pathogen capture in flowing fluids with magnetic nanoparticles. Small 11(42):5657–5666

    Article  Google Scholar 

  22. Mefford OT, Woodward RC, Goff JD, Vadala TP, Pierre TGSt, Dailey JP, Riffle JS, (2007) Field-induced motion of ferrofluids through immiscible viscous media. J Magn Magn Mater 311:347–353

  23. Mefford OT, Carroll MRJ, Vadala ML, Goff JD, Mejia-Ariza R, Saunders M, Woodward RC, Pierre TGSt, Davis RM, Riffle JS, (2008) Size analysis of PDMS-magnetite nanoparticle complexes: experiment and theory. Chem Mater 20(6):2184–2191

  24. Mefford OT, Vadala ML, Carroll MRJ, Mejia-Ariza R, Caba Beth L, Timothy Pierre, GSt, Woodward Robert C, Davis Richey M, Riffle JS, (2008) Stability of polydimethylsiloxane-magnetite nanoparticles against flocculation: interparticle interactions of polydisperse materials. Langmuir 24(9):5060–5069

  25. Rowghanian P, Meinhart CD, Campás O (2016) Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J Fluid Mech 802:245–262

    Article  ADS  MathSciNet  Google Scholar 

  26. Afkhami S, Renardy Y, Renardy M, Riffle JS, St. Pierre TG, (2008) Field-induced motion of ferrofluid droplets through immiscible viscous media. J Fluid Mech 610:363–380

  27. Cristini V, Guido S, Alfani A, Blawzdziewicz J, Loewenberg M (2003) Drop breakup and fragment size distribution in shear flow. J Rheol 47:1283–1298

    Article  ADS  Google Scholar 

  28. Janssen PJA, Anderson PD (2008) A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops. J Comput Phys 227:8807–8819

    Article  ADS  MATH  Google Scholar 

  29. Bazhlekov IB, Anderson PD, Meijer HEH (2006) Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J Colloid Interface Sci 298:369–394

    Article  ADS  Google Scholar 

  30. Erdmanis J, Kitenbergs G, Perzynski R, Cēbers A (2017) Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J Fluid Mech 821:266–295

    Article  ADS  MathSciNet  Google Scholar 

  31. Lebedev AV, Engel A, Moroznov KI, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. N J Phys 5(57):1–20

    Google Scholar 

  32. Feng JJ, Chen C-Y (2016) Interfacial dynamics in complex fluids. J Fluid Sci Technol 11(4):JFST0021

  33. Cowley MD, Rosensweig R (1968) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688

    Article  ADS  MATH  Google Scholar 

  34. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, New York

    Google Scholar 

  35. Lange A, Richter R, Tobiska L (2007) Linear and nonlinear approach to the rosensweig instability. GAMM-Mitt 30(1):171–184

    Article  MATH  MathSciNet  Google Scholar 

  36. Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T (2016) Observing the rosensweig instability of a quantum ferrofluid. Nature 530:194–197

    Article  ADS  Google Scholar 

  37. Lavrova O, Polevikov V, Tobiska L (2012) Numerical study of diffusion of interacting particles in a magnetic fluid layer. Numerical modeling. InTech, pp 183–202

  38. Kang TG, Gao Y, Hulsen MA, den Toonder JMJ, Anderson PD (2013) Direct simulation of the dynamics of two spherical particles actuated magnetically in a viscous fluid. Comput Fluids 86:569–581

    Article  MATH  MathSciNet  Google Scholar 

  39. Seric I, Afkhami S, Kondic L (2014) Interfacial instability of thin ferrofluid films under a magnetic field. J Fluid Mech 755:R1

  40. Conroy DT, Matar OK (2015) Thin viscous ferrofluid film in a magnetic field. Phys Fluids 27:092102

    Article  ADS  Google Scholar 

  41. Craster RV, Matar OK (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys Fluids 17:032104

    Article  ADS  MATH  Google Scholar 

  42. Yue P, Lee S, Afkhami S, Renardy Y (2012) On the motion of superparamagnetic particles in magnetic drug targeting. Acta Mech 223(3):505–527

    Article  MATH  MathSciNet  Google Scholar 

  43. LifeForce Hospitals Webserver medmail@usa.net. http://chemo.net/newpage91.htm, Copyright 1999

  44. House SD, Johnson PC (1986) Diameter and blood flow of skeletal muscle venules during local flow regularization. Am J Physiol Heart Circ Physiol 250:H828–H837

    Google Scholar 

  45. Cohen EGD, van Zon R (2007) Stationary state fluction theorems for driven Langevin systems. C R Phys 8:507–517

    Article  ADS  Google Scholar 

  46. Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–463

    Article  ADS  Google Scholar 

  47. Cherry EM, Eaton JK (2014) A comprehensive model of magnetic particle motion during magnetic drug targeting. Int J Mult Flow 59:173–185

    Article  Google Scholar 

  48. Furlani EP (2010) Magnetic biotransport: analysis and applications. Materials 3:2412–2446

    Google Scholar 

  49. Cao Q, Han X, Li L (2012) Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J Phys D 45:465001

    Article  ADS  Google Scholar 

  50. Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43:525–546

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Picchini U (2009) SDE Toolbox: simulation and estimation of stochastic differential equations with Matlab. http://sdetoolbox.sourceforge.net/

  52. Barnsley LC, Carugo D, Aron M, Stride E (2017) Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Phys Med Biol 62:2333–2360

    Article  Google Scholar 

  53. Sprenger L, Dutz S, Schneider T, Odenbach S, Haefeli UO (2015) Simulations and experimental determination of the online separation of blood components with the help of microfluidic cascading spirals. Biomicrofluidics 9:044110

    Article  Google Scholar 

  54. Rukshin I, Mohrenweiser J, Yue P, Afkhami S (2017) Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting. Fluids 2(2):29

    Article  Google Scholar 

  55. Griffiths IM, Stone HA (2012) Axial dispersion via shear-enhanced diffusion in colloidal suspensions. Europhys Lett 97(5):58001-p1–58001-p6

  56. Lavrova O, Matthies G, Mitkova T, Polevikov V, Tobiska L (2006) Numerical treatment of free surface problems in ferrohydrodynamics. J Phys 18(38):S2657–S2669

    MATH  Google Scholar 

  57. Lavrova O, Matthies G, Polevikov V, Tobiska L (2004) Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc Appl Math Mech 4:704–705

    Article  MATH  Google Scholar 

  58. Bashtovoi V, Lavrova OA, Polevikov VK, Tobiska L (2002) Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field. J Magn Magn Mater 252:299–301

    Article  ADS  Google Scholar 

  59. Matthies G, Tobiska L (2005) Numerical simulation of normal-field instability in the static and dynamic case. J Magn Magn Mater 289:346–349

    Article  ADS  Google Scholar 

  60. Knieling H, Richter R, Rehberg I, Matthies G, Lange A (2007) Growth of surface undulations at the Rosensweig instability. Phys Rev E 76:066301

    Article  ADS  MathSciNet  Google Scholar 

  61. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flow. Ann Rev Fluid Mech 31:567–604

    Article  ADS  MathSciNet  Google Scholar 

  62. Smereka P, Sethian J (2003) Level-set methods for fluid interfaces. Ann Rev Fluid Mech 35:341–372

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech 30:139–166

    Article  ADS  MathSciNet  Google Scholar 

  64. Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341:253

    Article  ADS  Google Scholar 

  65. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys Lett 43:649–654

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSF-DMS-1311707 and NSF-CBET-1604351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Afkhami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afkhami, S., Renardy, Y. Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling. J Eng Math 107, 231–251 (2017). https://doi.org/10.1007/s10665-017-9931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-017-9931-9

Keywords

Navigation