Skip to main content
Log in

On the motion of superparamagnetic particles in magnetic drug targeting

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stochastic ODE model is developed for the motion of a superparamagnetic cluster suspended in a Hagen-Poiseuille flow and guided by an external magnet to travel to a target. The specific application is magnetic drug targeting, with clusters in the range of 10–200 nm radii. As a first approximation, we use a magnetic dipole model for the external magnet and focus on a venule of 10−4 m radius close to the surface of the skin as the pathway for the clusters. The time of arrival at the target is calculated numerically. Variations in release position, background flow, magnetic field strength, number of clusters, and stochastic effects are assessed. The capture rate is found to depend weakly on variations in the velocity profile, and strongly on the cluster size, the magnetic moment, and the distance between the magnet and the blood vessel wall. A useful condition is derived for the optimal capture rate. The case of simultaneous release of many clusters is investigated. Their accumulation in a neighborhood of the target at the venule wall follows a normal distribution with the standard deviation roughly half of the distance between the magnet and the target. Ideally, this deviation should equal the tumor radius, and the magnet should be beneath the center of the tumor. The optimal injection site for a cluster is found to be just prior to arrival at the target. Two separate mechanisms for capturing a cluster are the magnetic force and, for radii smaller than 20 nm, Brownian motion. For the latter case, the capture rate is enhanced by Brownian motion when the cluster is released near the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexiou C., Arnold W., Klein R.J., Parak F.G., Hulin P., Bergemann C., Erhardt W., Wagenpfeil S., Lübbe A.S.: Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000)

    Google Scholar 

  2. Voltairas P.A., Fotiadis D.I., Massalas L.K.: Elastic stability of silicone ferrofluid internal tamponade (sfit) in retinal detachment surgery. J. Magn. Magn. Mater. 225, 248–255 (2001)

    Article  Google Scholar 

  3. Voltairas P.A., Fotiadis D.I., Michalis L.K.: Hydrodynamics of magnetic drug targeting. J. Biomech. 35, 813–821 (2002)

    Article  Google Scholar 

  4. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167–181 (2003)

    Article  Google Scholar 

  5. Neuberger T., Schopf B., Hofmann H., Hofmann M., von Rechenberg B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)

    Article  Google Scholar 

  6. Buzea C., Pacheco I.I., Robbie K.: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007)

    Article  Google Scholar 

  7. Chertok B., Moffat B.A., David A.E., Yu F., Bergemann C., Ross B.D., Yang V.C.: Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)

    Article  Google Scholar 

  8. Roca A.G., Costo R., Rebolledo A.F., Veintemillas-Verdaguer S., Tartaj P., González-Carreno T., Morales M.P., Serna C.J.: Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 42, 224002 (2009)

    Article  Google Scholar 

  9. Berry C.C.: Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 42, 224003 (2009)

    Article  Google Scholar 

  10. Pankhurst Q.A., Thanh N.K.T., Jones S.K., Dobson J.: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 42, 224001 (2009)

    Article  Google Scholar 

  11. Mishra B., Patel B.B., Tiwari S.: Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed. Nanotechnol. Biol. Med. 6, 9–24 (2010)

    Article  Google Scholar 

  12. Shapiro B.: Toward dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J. Magn. Magn. Res. 321, 1594–1599 (2009)

    Google Scholar 

  13. Takeda S., Mishima F., Fujimoto S., Izumi Y., Nishijima S.: Development of magnetically targeted drug delivery system using superconducting magnet. J. Magn. Magn. Mater. 311, 367–371 (2007)

    Article  Google Scholar 

  14. Rosensweig R.E.: Ferrohydrodynamics. Cambridge University Press, New York (1985)

    Google Scholar 

  15. Qiao X., Bai M., Tao K., Gong X., Gu R., Watanabe H., Sun K., Wu J., Kang X.: Magnetorheological behavior of polyethylene glycol-coated fe3o4 ferrofluids. J. Soc. Rheol. Jpn. 38, 23–30 (2010)

    Article  Google Scholar 

  16. Thompson Mefford O., Carroll M.R.J., Vadala M.L., Goff J.D., Mejia-Ariza R., Saunders M., Woodward R.C., St. Pierre T.G., Davis R.M., Riffle J.S.: Size analysis of PDMS-magnetite nanoparticle complexes: experiment and theory. Chem. Mater. 20, 2184–2191 (2008)

    Article  Google Scholar 

  17. Mefford O.T., Vadala M.L., Carroll M.R.J., Mejia-Ariza R., Caba B.L., St. Pierre T.G., Woodward R.C., Davis R.M., Riffle J.S.: Stability of polydimethylsiloxane-magnetite nanoparticles against flocculation: Interparticle interactions of polydisperse materials. Langmuir 24, 5060–5069 (2008)

    Article  Google Scholar 

  18. Miles W.C., Goff J.D., Huffstetler P.P., Mefford O.T., Riffle J.S., Davis R.M.: The design of well-defined PDMS-magnetite complexes. Polymer 51, 482–491 (2010)

    Article  Google Scholar 

  19. Balasubramaniam S., Pothayee N., Lin Y., House M., Woodward R.C., St. Pierre T.G., Davis R.M., Riffle J.S.: Poly(N-isopropylacrylamide)-coated superparamagnetic iron oxide nanoparticles: relaxometric and fluorescence behavior correlate to temperature-dependent aggregation. Chem. Mater. 23, 3348–3356 (2011)

    Article  Google Scholar 

  20. Pothayee N., Balasubramaniam S., Davis R.M., Riffle J.S., Carroll M.R.J., Woodward R.C., St. Pierre T.G.: Synthesis of ready-to-absorb polymeric nanoshells for magnetic iron oxide nanoparticles via atom transfer radical polymerization. Polymer 52, 1356–1366 (2011)

    Article  Google Scholar 

  21. Mejia-Ariza, R., Celebi, O., Riffle, J.S., Davis, R.M.: Formation of magnetite-containing nanoparticles using a multi-inlet vortex mixer. AIChE Annual Meeting (2008)

  22. Ganguly R., Zellmer B., Puri I.K.: Field-induced self-assembled ferrofluid aggregation in pulsatile flow. Phys. Fluids 17, 097104 (2005)

    Article  Google Scholar 

  23. Barrera C., Herrera A., Zayas Y., Rinaldi C.: Surface modification of magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 321, 1397–1399 (2009)

    Article  Google Scholar 

  24. Richardson, G., Cummings, L., King, J., Gaffney, E., Hazelwood, L., Chapman, J.: Drug delivery by magnetic microspheres. In: Report on a Problem Studied at the UK Mathematics-in-Medicine Study Group Nottingham 2000, http://www.maths-in-medicine.org/uk/2000/drug-delivery (2001)

  25. Grief A.D., Richardson G.: Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005)

    Article  Google Scholar 

  26. Dobson J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)

    Article  Google Scholar 

  27. Nacev A., Beni C., Bruno O., Shapiro B.: Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine 5, 1459–1466 (2010)

    Article  Google Scholar 

  28. Nacev A., Beni C., Bruno O., Shapiro B.: The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater. 323, 651–668 (2011)

    Article  Google Scholar 

  29. Mishima F., Takeda S., Izumi Y., Nishijima S.: Three dimensional motion control system of ferromagnetic particles for magnetically targeted drug delivery systems. IEEE Trans. Appl. Superconduct. 16, 1539–1542 (2006)

    Article  Google Scholar 

  30. Haverkort J.W., Kenjeres S., Kleijn C.R.: Computational simulations of magnetic particle capture in arterial flows. Ann. Biomed. Eng. 37, 2436–2448 (2009)

    Article  Google Scholar 

  31. Darton N.J., Hallmark B., Agrawal P., James T., Ho V.H.B., Slater N.K.H.: On the magnetic field architecture required to capture superparamagnetic nanoparticles in a microcapillary flow. J. Nanopart. Res. 12, 307–317 (2010)

    Article  Google Scholar 

  32. Strauss, D.: Magnetic drug targeting (2007). http://www.comsol.com/showroom/gallery/197

  33. Trenado, C., Strauss, D.J.: Magnetic nanoparticles for in vivo applications: a numerical modeling study. In: Deutsch, A., Brusch, L., Byrne, H., de Vries, G., Herzel, H. (eds.) Mathematical Modeling of Biological Systems, Volume I Modeling and Simulation in Science, Engineering and Technology. pages Part IV, 275–280. Birkhäuser Boston, (2007). There are errors, e.g., on p. 277, the correct equation for line 1 is B = μ H = μ 0(H + M). On the same page, line 3 should be \({{\bf B}=\nabla \times {\bf A}}\) and \({\nabla \cdot {\bf A}=0}\) which is stated backward. This error is repeated further on. However, the equation which follows uses the correct \({{\bf B}=\nabla \times {\bf A}}\). There is an error in the expression for γ, which should equal (−M y , M x ), and applied to a linear medium in 2D, this should be proportional to \({(\partial A/\partial x,\partial A/\partial y)}\), showing a sign error in the second component. The arctan expression is an attempt to implement a nonlinear constitutive law. However, such a nonlinear law has the form M = f(|H|)H, and clearly the nonlinear function cannot be applied component-wise. These issues are not explained in this paper.

  34. LifeForce Hospitals Webserver medmail@usa.net. http://chemo.net/newpage91.htm, Copyright (1999)

  35. Afkhami S., Renardy Y., Renardy M., Riffle J.S., St. Pierre T.G.: Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363–380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Afkhami S., Renardy Y., Renardy M., Riffle J.S., St. Pierre T.G. (2008) Numerical modeling of ferrofluid droplets in magnetic fields. In: Proceedings of XVth International Congress on Rheology. American Institute of Physics (2008)

  37. Afkhami S., Tyler A.J., Renardy Y., Renardy M., Woodward R.C., St. Pierre T.G., Riffle J.S.: Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chiou, E.P.Y.: Optical tweezers and magnetic tweezers (2007). http://www.seas.ucla.edu/~pychiou/Lecture-14-3 Optical Tweezers and Magnetic Tweezers.pdf, MAE M 282

  39. Mikkelsen, C.I.: Magnetic separation and hydrodynamic interactions in microfluidic systems. PhD thesis, Technical University of Denmark (2005)

  40. http://www.mathworks.com. Function ode45

  41. Cohen E.G.D., van Zon R.: Stationary state fluction theorems for driven Langevin systems. Comptes Rendus Physique 8, 507–517 (2007)

    Article  Google Scholar 

  42. Higham D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Picchini, U.: SDE Toolbox: simulation and estimation of stochastic differential equations with Matlab (2009). http://sdetoolbox.sourceforge.net/

  44. Mefford O.T., Woodward R.C., Goff J.D., Vadala T.P., St. Pierre T.G., Dailey J.P., Riffle J.S.: Field-induced motion of ferrofluids through immiscible viscous media: Testbed for restorative treatment of retinal detachment. J. Magn. Magn. Mater. 311, 347–353 (2007)

    Article  Google Scholar 

  45. House S.D., Johnson P.C.: Diameter and blood flow of skeletal muscle venules during local flow regularization. Am. J. Physiol. Heart Circ. Physiol. 250, H828–H837 (1986)

    Google Scholar 

  46. Shaw S., Murthy P.V.S.N., Pradhan S.C.: Effect of non-Newtonian characteristics of blood on magnetic targeting in the impermeable micro-vessel. J. Magn. Magn. Mater. 322, 1037–1043 (2010)

    Article  Google Scholar 

  47. Mukundakrishnan K., Eckmann D.M., Ayyaswamy P.S.: Bubble motion through a generalized power-law fluid flowing in a vertical tube. Ann. NY Acad. Sci. 1161, 256–267 (2009)

    Article  Google Scholar 

  48. Glowinski R., Pan T.W., Hesla T.I., Joseph D.D., Périaux J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. http://www.mathworks.com. Function ode15s

  50. Ganguly R., Puri I.K.: Microfluidic transport in magnetic MEMS and bioMEMS. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 382–399 (2010)

    Article  Google Scholar 

  51. Haverkort J.W., Kenjeres S., Kleijn C.R.: Magnetic particle motion in a Poiseuille flow. Phys. Rev. E 80, 016302 (2009)

    Article  Google Scholar 

  52. Climent E., Maxey M.R., Karniadakis G.E.: Dynamics of self-assembled chaining in magnetorheological fluids. Langmuir 20, 507–513 (2004)

    Article  Google Scholar 

  53. Zhu Y., Umehara N., Ido Y., Sato A.: Computer simulation of structures and distributions of particles in MAGIC fluid. J. Magn. Magn. Mater. 302, 96–104 (2006)

    Article  Google Scholar 

  54. Mejia-Ariza, R.: Design, synthesis and characterization of magnetite clusters using a multi inlet vortex mixer. Master’s thesis, Virginia Tech (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Renardy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, P., Lee, S., Afkhami, S. et al. On the motion of superparamagnetic particles in magnetic drug targeting. Acta Mech 223, 505–527 (2012). https://doi.org/10.1007/s00707-011-0577-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0577-9

Keywords

Navigation