Skip to main content
Log in

Contact-impact analysis of a rotating geometric nonlinear plate under thermal shock

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A contact-impact model is developed for the rub-induced vibration analysis of a rotating geometric nonlinear plate under thermal shock. The proposed model takes into account different contact positions in the width direction and is capable of adjusting the form of rubbing forces to different system parameters. A series of discussions is carried out to verify the present contact-impact model and the effects of the friction coefficient, the contact stiffness, and thermal transient are investigated. Numerical results show that the contact stiffness plays an important role in chaotic nonlinear vibrations by changing the friction force. The friction force is the main cause of geometric nonlinear chaos motions of the rotating contact-impact plate. Thermal shock results in the divergence of rub-induced vibrations for the geometric nonlinear plate with an increase in the time \(t\). Reducing the time interval before the thermal transient ceases can be an effective way to reduce thermal rub-induced damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Muszynska A (1989) Rotor to stationary element rub-related vibration phenomena in rotating machinery. Shock Vib Dig 21(3):3–11

    Article  Google Scholar 

  2. Choy FK, Padovan J (1987) Nonlinear transient analysis of rotor-casing rub events. J Sound Vib 113(3):529–545

    Article  ADS  Google Scholar 

  3. Goldman P, Muszynska A (1994) Chaotic behavior of rotor/stator system with rubs. J Eng Gas Turbines Power 116:693–701

    Article  Google Scholar 

  4. Choy FK, Padovan J, Qian W (1993) Effects of foundation excitation of multiple rub interactions in turbomachinery. J Sound Vib 164(2):349–363

    Article  ADS  Google Scholar 

  5. Chu F, Zhang Z (1997) Periodic quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int J Eng Sci 35(10–11):963–973

    Article  MATH  Google Scholar 

  6. Edwards S, Lees AW, Friswell MI (1999) The influence of torsion on rotor/stator contact in rotating machinery. J Sound Vib 225(4):767–778

    Article  ADS  Google Scholar 

  7. Sinha SK (2005) Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end. Int J Non-Linear Mech 40(1):113–149

    Article  MATH  Google Scholar 

  8. Sinha SK (2007) Combined torsional-bending-axial dynamics of a twisted rotating cantilever timoshenko beam with contact-impact loads. J Appl Mech 74:505–522

    Article  MATH  Google Scholar 

  9. Lesaffre N, Sinou J-J, Thouverez F (2007) Contact analysis of a flexible bladed-rotor. Eur J Mech A-Solid 26(3):541–557

    Article  MATH  Google Scholar 

  10. Lesaffre N, Sinou J-J, Thouverez F (2007) Stability analysis of rotating beams rubbing on an elastic circular structure. J Sound Vib 299(4–5):1005–1032

    Article  ADS  Google Scholar 

  11. Batailly A, Legrand M, Cartraud P, Pierre C (2010) Assessment of reduced models for the detection of modal interaction through rotor stator contacts. J Sound Vib 329(26):5546–5562

    Article  ADS  Google Scholar 

  12. Williams RJ (2011) Simulation of blade casing interaction phenomena in gas turbines resulting from heavy tip rubs using an implicit time marching method. In: Proceedings of ASME Turbo Expo. No. GT2011-45495

  13. Legrand M, Batailly A, Magnain B, Cartraud P, Pierre C (2012) Full three-dimensional investigation of structural contact interactions in turbomachines. J Sound Vib 331(11):2578–2601

    Article  ADS  Google Scholar 

  14. Batailly A, Legrand M, Millecamps A, Garcin F (2012) Numerical-experimental comparison in the simulation of rotor/stator interaction through blade-tip/abradable coating contact. J Eng Gas Turbines Power 134(8):082504

    Article  Google Scholar 

  15. Jiang J, Ahrens J, Ulbrich H (1998) A contact model of a rotating rubbing blade. In: Proceedings of the 5th international conference on rotor dynamics. Darmstadt: IFToMM. 478–489

  16. Young G (2006) Development of a general predictive model for blade tip/shroud interference; interactive forces. Doctoral Thesis, The Ohio State University

  17. Garza JW (2006) Tip rub induced blade vibrations: experimental and computational results. Doctoral Thesis, The Ohio State University

  18. Ferguson JL (2008) A moving load finite element-based approach to determining blade tip forces during a blade-on-casing incursion in a gas turbine engine. Doctoral Thesis, The Ohio State University

  19. Millecamps A, Brunel JF, Dufrenoy P, Garcin F, Nucci M (2009) Influence of thermal effects during blade-casing contact experiments. ASME. DETC2009-86842

  20. Padova C, Barton J, Dunn MG, Manwaring S (2005) Development of an experimental capability to produce controlled blade tip/shroud rubs at engine speed. J Turbomach-T ASME 127(4):726–735

    Article  Google Scholar 

  21. Padova C, Barton J, Dunn MG, Manwaring S (2007) Experimental results from controlled blade tip/shroud rubs at engine speed. J Turbomach-T ASME 129(4):713–723

    Article  Google Scholar 

  22. Carslaw HS, Faeger FC (1947) Conduction of heating solids. Physics Today, Oxford

    Google Scholar 

  23. Wang BL, Noda N, Han JC, Du SY (2002) Surface thermal shock fracture of a semi-infinite piezoelectric medium (poling axis parallel to the crack plane). Mech Mater 34(3):135–144

    Article  Google Scholar 

  24. Sadowski T, Nakonieczny K (2008) Thermal shock response of FGM cylindrical plates with various grading patterns. Comput Mater Sci 43(1):171–178

    Article  Google Scholar 

  25. Hein J, Storm J, Kuna M (2012) Numerical thermal shock analysis of functionally graded and layered materials. Int J Therm Sci 60:41–51

    Article  Google Scholar 

  26. Klauke T, Strehlau U, Kuhhorn A (2013) Integer frequency veering of mistuned blade integrated disks. J Turbomach 135(6):061004

    Article  Google Scholar 

  27. Farrahi GH, Tirehdast M, Parsa S, Motakefpoor M (2011) Failure analysis of a gas turbine compressor. Eng Fail Anal 18(1):474–484

    Article  Google Scholar 

  28. Gronstedt T, Irannezhad M, Lei X, Thulin O, Lundbladh A (2014) First and second law analysis of future aircraft engines. J Eng Gas Turbines Power 136(3):031202

    Article  Google Scholar 

  29. Timoshenko S, Goodier JN (1951) Theory of Elasticity. New York

  30. Zhang YX, Wang BL (2013) Thermal shock resistance analysis of a semi-infinite ceramic foam. Int J Eng Sci 62:22–30

    Article  MATH  Google Scholar 

  31. Boley GA, Barber AD (1957) Dynamic response of beams and plates to rapid heating. J Appl Mech 24:413

    MATH  MathSciNet  Google Scholar 

  32. Yoo HH, Pierre C (2003) Modal characteristic of a rotating rectangular cantilever plate. J Sound Vib 259:81–96

    Article  ADS  Google Scholar 

  33. Zhao J, Tian Q, Hu HY (2011) Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. J Comput Nonlinear Dyn 6(4):041013

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the reviewers for their comments and suggestions. This research was supported by the National Natural Science Foundation of China Grant 51275081 and the State Key Program of the National Natural Science of China through Grant 51335003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijiang Kou.

Appendix

Appendix

The terms in nonlinear equations of motion

$$\begin{aligned} pa_{mn}^{ij}&= \rho h\int _0^b {\int _0^a {\sin \left( \displaystyle \frac{(2m-1)\pi x}{2a}\right) \varphi _n (y)\sin \left( \displaystyle \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y}}, \end{aligned}$$
(32)
$$\begin{aligned} pb_{mn}^{ij}&= 2\Omega \rho h\int _0^b {\int _0^a {\phi _m (x)\varphi _n (y)\sin \left( \displaystyle \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y} },\end{aligned}$$
(33)
$$\begin{aligned} pc_{mn}^{ij}&= \rho h\Omega ^{2}\int _0^b {\int _0^a {\sin \left( \displaystyle \frac{(2m-1)\pi x}{2a}\right) \varphi _n (y) \left( \sin \displaystyle \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y} }\nonumber \\&+\int _0^b {\int _0^a {\displaystyle \frac{Eh}{1-\upsilon ^{2}}\left( {\displaystyle \frac{d^{2}}{d^{2}x}\sin \left( \displaystyle \frac{(2m-1)\pi x}{2a}\right) } \right) \varphi _n (y)\sin \left( \displaystyle \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y} }\nonumber \\&+\int _0^b \int _0^a \displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\sin \left( \displaystyle \frac{(2m-1)\pi x}{2a}\right) \ddot{\varphi }_n (y)\sin \left( \displaystyle \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y\nonumber \\&-\int _0^b { {\displaystyle \frac{Eh}{1-\upsilon ^{2}}\left( {\displaystyle \frac{d}{\mathrm {d}x}\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) } \right) \varphi _n (y)\sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)} \bigg |_0^a \mathrm {d}y}\nonumber \\&-\int _0^a { {\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) \dot{\varphi }_n (y)\sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)} \bigg |_0^b \mathrm {d}x}, \end{aligned}$$
(34)
$$\begin{aligned} pd_{mn}^{ij}&= \int _0^b {\int _0^a {\displaystyle \frac{Eh}{1-\upsilon ^{2}}\upsilon \dot{\phi }_m (x)\left( {\displaystyle \frac{d}{\mathrm {d}y}\cos \displaystyle \left( \frac{n\pi y}{b}\right) } \right) \sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y} }\nonumber \\&+\int _0^b {\int _0^a {\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\dot{\phi }_m (x)\left( {\displaystyle \frac{d}{\mathrm {d}y}\cos \displaystyle \left( \frac{n\pi y}{b}\right) } \right) \sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y} }\nonumber \\&-\int _0^b {{\displaystyle \frac{Eh}{1-\upsilon ^{2}}\upsilon \phi _m (x)\left( {\displaystyle \frac{d}{\mathrm {d}y}\cos \displaystyle \left( \frac{n\pi y}{b}\right) } \right) \sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)} \bigg |_0^a \mathrm {d}y} \nonumber \\&-\int _0^a { {\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\dot{\phi }_m (x)\cos \displaystyle \left( \frac{n\pi y}{b}\right) \sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)} \bigg |_0^b \mathrm {d}x}, \end{aligned}$$
(35)
$$\begin{aligned} qa_{mn}^{ij}&= \rho h\int _0^b {\int _0^a {\phi _m (x)\cos \displaystyle \left( \frac{n\pi y}{b}\right) \phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) \mathrm {d}x\mathrm {d}y}, } \end{aligned}$$
(36)
$$\begin{aligned} qb_{mn}^{ij}&= \int _0^b {\int _0^a {\displaystyle \frac{Eh}{1-\upsilon ^{2}}\upsilon \left( {\displaystyle \frac{d}{\mathrm {d}x}\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) } \right) \dot{\varphi }_n (y)\phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) \mathrm {d}x\mathrm {d}y} } \nonumber \\&+\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\int _0^b {\int _0^a {\left( {\displaystyle \frac{d}{\mathrm {d}x}\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) } \right) \dot{\varphi }_n (y)\phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) \mathrm {d}x\mathrm {d}y} } \nonumber \\&-\displaystyle \frac{Eh}{1-\upsilon ^{2}}\upsilon \int _0^a {\left( {\displaystyle \frac{d}{\mathrm {d}x}\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) } \right) \varphi _n (y)\phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) } \bigg |_0^b \mathrm {d}x \nonumber \\&-\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\int _0^b { {\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) \dot{\varphi }_n (y)\phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) } \bigg |_0^a \mathrm {d}y}, \end{aligned}$$
(37)
$$\begin{aligned} qc_{mn}^{ij}&= \displaystyle \frac{Eh}{1-\upsilon ^{2}}\int _0^b {\int _0^a {\phi _m (x)\left( {\displaystyle \frac{d^{2}}{\mathrm {d}y^{2}}\cos \displaystyle \left( \frac{n\pi y}{b}\right) } \right) \phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) \mathrm {d}x\mathrm {d}y} } \nonumber \\&+\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\int _0^b {\int _0^a {\ddot{\phi }_m (x)\cos \displaystyle \left( \frac{n\pi y}{b}\right) \phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) \mathrm {d}x\mathrm {d}y} } \nonumber \\&-\displaystyle \frac{Eh}{1-\upsilon ^{2}}\int _0^a {\phi _m (x)\left( {\displaystyle \frac{d}{\mathrm {d}y}\cos \displaystyle \left( \frac{n\pi y}{b}\right) } \right) \phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) } \bigg |_0^b \mathrm {d}x \nonumber \\&-\displaystyle \frac{Eh}{2\left( {1+\upsilon } \right) }\int _0^b { {\dot{\phi }_m (x)\cos \displaystyle \left( \frac{n\pi y}{b}\right) \phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) } \bigg |_0^a \mathrm {d}y} , \end{aligned}$$
(38)
$$\begin{aligned} ra_{mn}^{ij}&= \rho h\int _0^b {\int _0^a {\phi _m (x)\varphi _n (y)\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} }, \end{aligned}$$
(39)
$$\begin{aligned} rb_{mn}^{ij}&= D\zeta \int _0^b {\int _0^a {\left[ {\phi ^{(4)}_m (x)\varphi _n (y)+2\ddot{\phi }_m (x)\ddot{\varphi }_n (y)+\phi _m (x)\varphi ^{(4)}_n (y)} \right] \phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } ,\end{aligned}$$
(40)
$$\begin{aligned} rc_{mn}^{ij}&= 2\Omega \rho h\int _0^b {\int _0^a {\sin \displaystyle \left( \frac{(2m-1)\pi x}{2a}\right) \varphi _n (y)\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} },\end{aligned}$$
(41)
$$\begin{aligned} rd_{mn}^{ij}&= \rho h\Omega ^{2}\int _0^b {\int _0^a {\phi _m (x)\varphi _n (y)\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} }\nonumber \\&-D\int _0^b {\int _0^a {\left[ {\phi ^{(4)}_m (x)\varphi _n (y)+2\ddot{\phi }_m (x)\ddot{\varphi }_n (y)+\phi _m (x)\varphi ^{(4)}_n (y)} \right] \phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } \nonumber \\&-\rho h\Omega ^{2}\int _0^b {\int _0^a {\left[ {\left( {R+x} \right) {\phi }'_m (x)\varphi _n (y)-\left( {R(a-x)+\displaystyle \frac{1}{2}(a^{2}-x^{2})} \right) \ddot{\phi }_m (x)\varphi _n (y)} \right] \phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } \nonumber \\&-D{\int _0^b {\left[ {\ddot{\phi }_m (x)\varphi _n (y)+\upsilon \phi _m (x)\ddot{\varphi }_n (y)} \right] \dot{\phi }_i (x)\varphi _j (y)\mathrm {d}y} } \bigg |_0^a \nonumber \\&-D{\int _0^a {\left[ {\phi _m (x)\ddot{\varphi }_n (y)+\upsilon \ddot{\phi }_m (x)\varphi _n (y)} \right] \phi _i (x)\dot{\varphi }_j (y)\mathrm {d}x} } \bigg |_0^b \nonumber \\&+D{\int _0^b {\left[ {\phi ^{(3)}_m (x)\varphi _n (y)+(2-\upsilon )\dot{\phi }_m (x)\ddot{\varphi }_n (y)} \right] } \phi _i (x)\varphi _j (y)\mathrm {d}y} \bigg |_0^a \nonumber \\&+D{\int _0^a {\left[ {\phi _m (x)\varphi ^{(3)}_n (y)+(2-\upsilon )\ddot{\phi }_m (x)\dot{\varphi }_n (y)} \right] \phi _i (x)\varphi _j (y)\mathrm {d}x} } \bigg |_0^b \nonumber \\&-2D(1-\upsilon ){{\dot{\phi }_m (x)\dot{\varphi }_n (y)\phi _i (x)\varphi _j (y)}} \bigg |_{(0,0)}^{(a,b)}\nonumber \\&-\rho h\Omega ^{2}{\int _0^b {\left[ {R(a-x)+\displaystyle \frac{1}{2}(a^{2}-x^{2})} \right] \dot{\phi }_m (x)\varphi _n (y)\phi _i (x)\varphi _j (y)\mathrm {d}y} } \bigg |_0^a \nonumber \\&-\displaystyle \frac{Eh}{(1-\upsilon ^{2})}\left( {1+\upsilon } \right) a_T N_T \int _0^b {\int _0^a {{\phi }''_m (x)\varphi _n (y)\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } \nonumber \\&-\displaystyle \frac{Eh}{(1-\upsilon ^{2})}\left( {1+\upsilon } \right) a_T N_T \int _0^b {\int _0^a {\phi _m (x){\varphi }''_n (y)\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } \nonumber \\&+\displaystyle \frac{Eh}{1-\upsilon ^{2}}\left( {1+\upsilon } \right) a_T N_T {\int _0^b {{\phi }'_m (x)\varphi _n (y)\phi _i (x)\varphi _j (y)\mathrm {d}y} } \bigg |_0^a\nonumber \\&+\displaystyle \frac{Eh}{1-\upsilon ^{2}}\left( {1+\upsilon } \right) a_T N_T {\int _0^a {\phi _m (x){\varphi }'_n (y)\phi _i (x)\varphi _j (y)\mathrm {d}x} } \bigg |_0^b \,, \end{aligned}$$
(42)
$$\begin{aligned} f_1^{ij}&= \rho h\Omega ^{2}\int _0^b {\int _0^a {(R+x)\sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y} } -\sin \displaystyle \left( \frac{(2i-1)\pi }{2}\right) \int _0^b {F_n (y,t)\varphi _j (y)\mathrm {d}y} \nonumber \\&-\rho h\int _0^b \int _0^a \left[ {\ddot{x}_D \cos \Omega t+\ddot{z}_D \sin \Omega t} \right] \sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}x\mathrm {d}y\nonumber \\&+\displaystyle \frac{Eh\left( {1+\upsilon } \right) a_T N_T }{1-\upsilon ^{2}}{\int _0^b {\sin \displaystyle \left( \frac{(2i-1)\pi x}{2a}\right) \varphi _j (y)\mathrm {d}y} } \bigg |_0^a ,\end{aligned}$$
(43)
$$\begin{aligned} f_2^{ij}&= \displaystyle \frac{Eh}{1-\upsilon ^{2}}\left( {1+\upsilon } \right) a_T N_T {\int _0^a {\phi _i (x)\cos \displaystyle \left( \frac{j\pi y}{b}\right) \mathrm {d}x} } \bigg |_0^b \,, \end{aligned}$$
(44)
$$\begin{aligned} \displaystyle f_3^{ij}&= -\int _0^b {\int _0^a {\mu F_n (y,t)\delta (x-a)\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } -\rho h\int _0^b {\int _0^a {\left[ {-\ddot{x}_D \sin \Omega t+\ddot{z}_D \cos \Omega t} \right] \phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y} } \nonumber \\&-D\left( {1+\upsilon } \right) a_T \left\{ {\begin{array}{l} \displaystyle \int _0^b {\int _0^a {\displaystyle \frac{\partial ^{2}M_T }{\partial x^{2}}} \phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y+\int _0^b {\int _0^a {\displaystyle \frac{\partial ^{2}M_T }{\partial y^{2}}\phi _i (x)\varphi _j (y)\mathrm {d}x\mathrm {d}y } } } \\ \displaystyle +\int _0^b {{M_T {\phi }'_i (x)\varphi _j (y)} \bigg |_0^a \mathrm {d}y}-\int _0^b {{\displaystyle \frac{\partial M_T }{\partial x}\phi _i (x)\varphi _j (y)} \bigg |_0^a \mathrm {d}y}\\ \displaystyle +\int _0^a { {M_T \phi _i (x){\varphi }'_j (y)} \bigg |_0^b \mathrm {d}x} -\int _0^a {{\displaystyle \frac{\partial M_T }{\partial y}\phi _i (x)\varphi _j (y)} \bigg |_0^b \mathrm {d}x}\\ \end{array}} \right\} . \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Kou, H. Contact-impact analysis of a rotating geometric nonlinear plate under thermal shock. J Eng Math 90, 119–140 (2015). https://doi.org/10.1007/s10665-014-9727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9727-0

Keywords

Navigation