Skip to main content
Log in

The screen printing of a power-law fluid

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 25 April 2012

Abstract

We present a two-dimensional large-aspect-ratio model for the off-contact screen printing of a power-law fluid. We extend the work of White et al. (J Eng Math 54:49–70, 2005) by explicitly including the fluid/air free surface that is present beneath the screen ahead of the squeegee. In the distinguished parameter limit of greatest interest to industry, the process is quasi-steady on the time-scale of a print and can be analysed in three separate regions using the method of matched asymptotic expansions. This allows us to predict where the fluid transfers through the screen, the point at which it first makes contact with the substrate, and the amount of fluid deposited on the substrate during a print stroke. Finally, we show that using a shear-thinning fluid will decrease the amount of fluid transferred ahead of the squeegee, but increase the amount of fluid deposited on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobs DR, Voigt DR (1970) Parametric dependencies in thick film screening. Proc ISHM 18: 1–10

    Google Scholar 

  2. Riemer DE (1988) Analytical model of the screen printing process: part 1. Solid State Technol 8: 107–111

    Google Scholar 

  3. Riemer DE (1988) Analytical model of the screen printing process: part 2. Solid State Technol 9: 85–90

    Google Scholar 

  4. Riemer DE (1989) The theoretical fundamentals of the screen printing process. Hybrid Circuits 18: 8–17

    Google Scholar 

  5. Taylor GI (1962) On scraping viscous fluid from a plane surface. In: Schäfer M (eds) Miszellaneen der Angewandten Mechanik. Akademie-Verlag, Berlin, pp 313–315

    Google Scholar 

  6. Hunter B (1994) A Stokes flow analysis of the screen printing process. Int J Microcircuits Electron Pack 17: 21–26

    Google Scholar 

  7. Riedler J (1983) Viscous flow in corner regions with a moving wall and leakage of fluid. Acta Mech 48(1–2): 95–102

    Article  MATH  Google Scholar 

  8. Jeong J, Kim M (1985) Slow viscous flow due to sliding of a semi-infinite plate over a plane. J Phys Soc Jpn 54: 1789–1799

    Article  ADS  Google Scholar 

  9. Owczarek JA, Howland FL (1990) A study of the off-contact screen printing process - Part I: model of the printing process and some results derived from experiments. IEEE Trans Comp Hybrids Manuf Technol 13(2): 358–367

    Article  Google Scholar 

  10. Owczarek JA, Howland FL (1990) A study of the off-contact screen printing process - Part II: analysis of the model of the printing process. IEEE Trans Comp Hybrids Manuf Technol 13(2): 368–375

    Article  Google Scholar 

  11. Clements DJ, Desmulliez MPY, Abraham E (2007) The evolution of paste pressure during stencil printing. Solder Surf Mt Tech 19: 9–14

    Article  Google Scholar 

  12. Anderson JT, Gethin DT, Claypole TC, Jewell EH, Bohan MFJ, Korochkina TV (2000) Hydrodynamic interactions in the screen-printing process. J Prepress Print Technol 3: 10–17

    Google Scholar 

  13. White G, Breward C, Howell P, Young R (2005) A model for the screen-printing of Newtonian fluids. J Eng Math 54: 49–70

    Article  MathSciNet  Google Scholar 

  14. Chapman SJ, Fitt AD, Please CP (1997) Extrusion of power-law shear thinning fluids with small exponent. Int J Non-linear Mech 32(1): 187–199

    Article  MATH  Google Scholar 

  15. Ross AB, Wilson SK, Duffy BR (1999) Blade coating of a power-law fluid. Phys Fluids 11(5): 958–970

    Article  ADS  MATH  Google Scholar 

  16. Ostwald W (1925) Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I. Colloid Polym Sci 36(2): 99–117

    Article  Google Scholar 

  17. Bird R, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2 edn. Fluid mechanics. Wiley, New York

    Google Scholar 

  18. Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(1): 197–207

    Article  ADS  Google Scholar 

  19. Pozdrikidis C (2001) Shear flow over a particulate or fibrous plate. J Eng Math 39: 3–24

    Article  Google Scholar 

  20. Pozdrikidis C (2004) Boundary conditions for shear flow past a permeable interface modelled as an array of cylinders. Comput Fluids 33: 1–17

    Article  Google Scholar 

  21. Pozdrikidis C (2005) Effect of membrane thickness on the slip and drip velocity in parallel shear flow. J Fluids Struct 20: 177–187

    Article  Google Scholar 

  22. Tio KK, Sadhal SS (1994) Boundary conditions for Stokes flow near a porous membrane. Appl Sci Res 52(1): 1–20

    Article  MATH  Google Scholar 

  23. Taroni M (2010) Thin film models of the screen-printing process. D.Phil thesis, Oxford

  24. White G (2006) Mathematical modelling of the screen-printing process. D.Phil thesis, Oxford

  25. McEwan AD, Taylor GI (1966) The peeling of a flexible strip attached by a viscous adhesive. J Fluid Mech 26: 1–15

    Article  ADS  Google Scholar 

  26. Taylor GI (1963) Cavitation of a viscous fluid in narrow passages. J Fluid Mech 16(4): 595–619

    Article  ADS  MATH  Google Scholar 

  27. Coyne JC, Elrod HG (1970) Conditions for the rupture of a lubrication film. Part 1. Theoretical model. J Lubr Technol 92: 451–456

    Article  Google Scholar 

  28. Savage MD (1977) Cavitation in lubrication. Part 1. On boundary conditions and cavity-fluid interfaces. J Fluid Mech 80: 743–755

    Article  ADS  MATH  Google Scholar 

  29. Ruschak KJ (1982) Boundary conditions at a liquid/air interface in lubrication flows. J Fluid Mech 119: 107–120

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Coyle DJ, Macosko CW, Scriven LE (1986) Film-splitting flows in forward roll coating. J Fluid Mech 171: 183–207

    Article  ADS  Google Scholar 

  31. Dussan V, EB, Davis SH (1974) On the motion of a fluid-fluid interface along a solid surface. J Fluid Mech 65: 71–95

    Article  ADS  MATH  Google Scholar 

  32. Hocking LM, Rivers AD (1982) The spreading of a drop by capillary action. J Fluid Mech 121: 425–442

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Moriarty JA, Terrill EL (1996) Mathematical modelling of the motion of hard contact lenses. Euro J Appl Math 7: 117–575

    Article  MathSciNet  Google Scholar 

  34. Keller HB (1985) Numerical methods for two point boundary value problems. Dover publications, New York

    Google Scholar 

  35. Boyd JP (2001) Chebyshev and Fourier spectral methods. Dover publications, New York

    MATH  Google Scholar 

  36. Shampine LF, Kierzenka J, Reichelt MW (2000) Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. ftp://ftp.mathworks.com/pub/doc/papers/bvp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taroni, M., Breward, C.J.W., Howell, P.D. et al. The screen printing of a power-law fluid. J Eng Math 73, 93–119 (2012). https://doi.org/10.1007/s10665-011-9500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9500-6

Keywords

Navigation