Skip to main content
Log in

A model for the screen-printing of Newtonian fluids

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A preliminary investigation into aspects of the off-contact screen-printing process is presented. A mathematical model for the printing of a thin film of Newtonian fluid is proposed, in which the screen is modelled as a permeable membrane, and the entire region above and below the screen is flooded. By drawing upon widely used industrial circuit printing practices, the distinguished limit of greatest interest to this industry is identified. Numerical and asymptotic solutions of this distinguished limit are presented that reproduce many of the features observed in industrial screen-printing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobs D.R., Voigt D.R. (1970). Parametric dependencies in thick film screening. Proc. ISHM 18:1–10

    Google Scholar 

  2. Riemer D.E. (1988). Analytical model of the screen printing process: part 1. Solid State Technol 8:107–111

    Google Scholar 

  3. Riemer D.E. (1988). Analytical model of the screen printing process: part 2. Solid State Technol 9:85–90

    Google Scholar 

  4. Riemer D.E. (1989). The theoretical fundamentals of the screen printing process. Hybrid Circuits 18:8–17

    Google Scholar 

  5. Taylor G.I. (1962). On scraping viscous fluid from a plane surface. Miszellaneen der Angewandten Mechanik 313–315.

  6. Hunter B. (1994) A Stokes flow analysis of the screen printing process. Int. J. Microcircuits and Electronic packaging 17:21–26

    Google Scholar 

  7. Riedler J. (1983). Viscous flow in corner regions with a moving wall and leakage of fluid. Acta Mechanica 48:95–102

    Article  MATH  Google Scholar 

  8. Chapman S.J., Fitt A.D., Please C.P. (1997). Extrusion of power-law shear thinning fluids with small exponent. Int. J. Non-linear Mech. 32:187–199

    Article  MATH  Google Scholar 

  9. Jeong J., Kim M. (1985). Slow viscous flow due to sliding of a semi-infinite plate over a plane. J. Phys. Soc. Jpn. 54:1789–1799

    Article  ADS  Google Scholar 

  10. Owczarek J.A., Howland F.L. (1990). A study of the off-contact screen printing process – part I:model of the printing process and some results derived from experiments. IEEE Trans. Comp. Hybrids Manuf. Technol. 13:358–367

    Article  Google Scholar 

  11. Owczarek J.A., Howland F.L. (1990). A study of the off-contact screen printing process – part II:analysis of the model of the printing process. IEEE Trans. Comp. Hybrids Manuf. Technol. 13:368–375

    Article  Google Scholar 

  12. Anderson J.T., Gethin D.T., Claypole T.C., Jewell E.H., Bohan M.F.J., Korochkina T.V. (2000). Hydrodynamic interactions in the screen printing process. J. Prepress and Printing Technol. 3:155–192

    Google Scholar 

  13. Glinski G.P., Bailey C., Pericleous K.A. (2001). A non-Newtonian computational fluid dynamics study of the stencil printing process. Proc. Instn. Mech. Engrs. 215:437–446

    Google Scholar 

  14. Ockendon H., Ockendon J.R. (1995). Viscous Flow. Cambridge University Press, Cambridge, 113pp.

    MATH  Google Scholar 

  15. Tio K.K., Sadhal S.S. (1994). Boundary conditions for Stokes flow near a porous membrane. Applied Scientific Research 52:1–20

    Article  MATH  Google Scholar 

  16. Pozrikidis C. (2001). Shear flow over a particulate or fibrous plate. J. Engng. Math. 39:3–24

    Article  MATH  MathSciNet  Google Scholar 

  17. Pozrikidis C. (2004). Boundary conditions for a shear flow past a permeable interface modeled as an array of cylinders. Comp. Fluids 33:1–17

    Article  MATH  Google Scholar 

  18. Pozrikidis C. (2005). Effect of membrane thickness on the slip and drift velocity in parallel shear flow. J. Fluids Struct. 20:177–187

    Article  ADS  Google Scholar 

  19. Oron A., Davis S.H., Bankoff S.G. (1997). Long-scale evolution of thin liquid films. Rev. Modern Phys. 69: 931–980

    Article  ADS  Google Scholar 

  20. Gradshteyn I.S., Ryzhik I.M. (1994). Table of Integrals, Series, and Products Fifth Edition. Academic Press, San Diego,1204pp.

    Google Scholar 

  21. Davis S.H., Hocking L.M.(1999). Spreading and imbibition of viscous fluid on a porous base. Phys. Fluids 11:48–57

    Article  ADS  Google Scholar 

  22. Davis S.H., Hocking L.M.(2000). Spreading and imbibition of viscous fluid on a porous base II. Phys. Fluids 12:1646–1655

    Article  ADS  Google Scholar 

  23. Alleborn N., Raszillier H. (2004). Spreading and sorption of a droplet on a porous substrate. Chem. Engng. Sci. 59:2071–2088

    Article  Google Scholar 

  24. McEwan A.D., Taylor G.I. (1966). The peeling of a flexible strip attached by a viscous adhesive. J. Fluid Mech. 26:1–15

    Article  ADS  Google Scholar 

  25. Gaver III D.P., Halpern D., Jensen O.E., Grotberg J.B. (1996). The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319:25–65

    Article  MATH  ADS  Google Scholar 

  26. Jensen O.E., Horsburgh M.K., Halpern D., Gaver III D.P. (2002). The steady propagation of a bubble in a flexible-walled channel: asymptotic and computational models. Phys. Fluids 14:443–457

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, G.S., Breward, C.J.W., Howell, P.D. et al. A model for the screen-printing of Newtonian fluids. J Eng Math 54, 49–70 (2006). https://doi.org/10.1007/s10665-005-9000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9000-7

Keywords

Navigation