Skip to main content
Log in

Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The head-on collision of two equal-sized drops in a hyperbolic flow is investigated numerically. An axisymmetric volume-of-fluid (VOF) method is used to simulate the motion of each drop toward a symmetry plane where it interacts and possibly coalesces with its mirror image. The volume-fraction boundary condition on the symmetry plane is manipulated to numerically control coalescence. Two new numerical methods have been developed to incorporate the van der Waals forces in the Navier–Stokes equations. One method employs a body force computed as the negative gradient of the van der Waals potential. The second method employs the van der Waals forces in terms of a disjoining pressure in the film depending on the film thickness. Results are compared to theory of thin-film rupture. Comparisons of the results obtained by the two methods at various values of the Hamaker constant show that the van der Waals forces calculated from the two methods have qualitatively similar effects on coalescence. A study of the influence of the van der Waals forces on the evolution and rupture of the film separating the drops reveals that the film thins faster under stronger van der Waals forces. Strong van der Waals forces lead to nose rupture, and small van der Waals forces lead to rim rupture. Increasing the Reynolds number causes a greater drop deformation and faster film drainage. Increasing the viscosity ratio slows film drainage, although the effect is small for small viscosity ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orme M (1997) Experiments on droplet collisions, bounce, coalescence and disruption. Prog Energy Combust Sci 23:65–79

    Article  Google Scholar 

  2. Ashgriz N, Poo JY (1990) Coalescence and separation in binary collisions of liquid drops. J Fluid Mech 221:183–204

    Article  ADS  Google Scholar 

  3. Jiang YJ, Umemura A, Law CK (1992) An experimental investigation on the collision behavior of hydrocarbon droplets. J Fluid Mech 234:171–190

    Article  ADS  Google Scholar 

  4. Qian J, Law CK (1997) Regimes of coalescence and separation in droplet collision. J Fluid Mech 331:59–80

    Article  ADS  Google Scholar 

  5. Leal LG (2004) Fluid induced coalescence of drops in a viscous fluid. Phys Fluids 16:1833–1851

    Article  ADS  Google Scholar 

  6. Foote GB (1975) The water drop rebound problem: dynamics of collision. J Atomos Sci 32:390–402

    Article  ADS  Google Scholar 

  7. Mashayek F, Ashgriz N, Minkowycz WJ, Shotorban B (2003) Coalescence collision of liquid drops. Int J Heat Mass Transfer 46:77–89

    Article  MATH  Google Scholar 

  8. Nobari MR, Jan YJ (1996) Head-on collision of drops –a numerical investigation. Phys Fluids 8:29–42

    Article  MATH  ADS  Google Scholar 

  9. Nobari MR, Tryggvason G (1996) Numerical simulations of three-dimensional drop collisions. AIAA J 34:750–755

    Article  ADS  Google Scholar 

  10. Lafaurie B, Zaleski S, Zanetti G (1994) Modeling merging and fragmentation in multiphase flows with surfer. J Comp Phys 113:134–147

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Premnath KN, Abraham J (2005) Simulations of binary drop collisions with a multiple-relaxation-time lattice-Boltzmann model. Phys Fluids 17:122105

    Article  ADS  Google Scholar 

  12. Pan Y, Suga K (2005) Numerical simulation of binary liquid droplet collision. Phys Fluids 17:082105

    Article  ADS  Google Scholar 

  13. Zinchenko AZ, Rother MA, Davis RH (1997) A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys Fluids 9:1493–1511

    Article  ADS  Google Scholar 

  14. Cristini V, Blawzdziewicz J, Loewenberg M (2001) An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence. J Comp Phys 168:445–463

    Article  MATH  ADS  Google Scholar 

  15. Cristini V, Blawzdziewicz J, Loewenberg M (1998) Near-contact motion of surfactant-covered spherical drops. J Fluid Mech 366:259–287

    Article  MATH  ADS  Google Scholar 

  16. Ida MP, Miksis MJ (1996) Thin film rupture. Appl Math Lett 9:35–40

    Article  MATH  MathSciNet  Google Scholar 

  17. Vaynblat D, Lister JR, Witelski TP (2000) Rupture of thin viscous films by van der Waals forces:evolution and self-similarity. Phys Fluids 13:1130–1140

    Article  ADS  Google Scholar 

  18. Zhang WW, Lister JR (1999) Similarity solutions for van der Waals rupture of a thin film on a solid substrate. Phys Fluids 11:2454–2462

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Chen JD (1985) A model of coalescence between two equal-sized spherical drops or bubbles. J Colloid Interface Sci 107:209–220

    Article  Google Scholar 

  20. Yiantsios SG, Davis RH (1991) Close approach and deformation of two viscous drops due to gravity and van der Waals forces. J Colloid Interface Sci 144:412–433

    Google Scholar 

  21. Abid S, Chesters AK (1994) The drainage and rupture of partially-mobile films between colliding drops at constant approach velocity. Int J Multiphase Flow 20:613–629

    Article  MATH  Google Scholar 

  22. Saboni A, Gourdon C, Chesters AK (1995) Drainage and rupture of partially-mobile films during coalescence in liquid-liquid systems under a constant interaction force. J Colloid Interface Sci 175:27–35

    Article  Google Scholar 

  23. Maldarelli C, Jain RK, Ivanov IB, Ruckenstein E (1980) Stability of symmetric and unsymmetric thin liquid films to short and long wavelength perturbations. J Colloid Interface Sci 78:118–143

    Article  Google Scholar 

  24. Deryagin BV (1955) Definition of the concept of and magnitude of the disjoining pressure and its role in the statics and kinetics of thin layers of liquids. Colloid J USSR 17:191–197

    Google Scholar 

  25. Nichols BD, Hirt CW, Hotchkiss RS (1980) Sola-VOF: A solution algorithm for transient fluid flow with multiple free boundaries. Los Alamos National Lab Report LA-8355

  26. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comp Phys 39:201–225

    Article  MATH  ADS  Google Scholar 

  27. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comp Phys 100:335–354

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Harlow FH, Welch JE (1965) Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface. Phys Fluids 8:2182–2189

    Article  ADS  Google Scholar 

  29. James AJ, Smith MK, Glezer A (2003) Vibration induced drop atomization and the numerical simulation of low-frequency single-droplet ejection. J Fluid Mech 476:29–62

    Article  MATH  ADS  Google Scholar 

  30. Meijerink JA, Van Der Vorst HA (1981) Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems. J Comp Phys 44:134–155

    Article  MATH  MathSciNet  Google Scholar 

  31. James AJ (2003) Vibration-induced droplet ejection. PhD thesis, Georgia Institute of Technology

  32. Tabor D (1991) Gases, liquids and solids and other states of matter. Cambridge University Press, New York

    Google Scholar 

  33. Nir S, Vassilieff CS (1988) Van der Waals interactions in thin films. In: Ivanov IB (eds) Thin liquid films: fundamentals and applications. Marcel Dekker, New York, pp 207–274

    Google Scholar 

  34. Mohamed-Kassim Z, Longmire EK (2004) Drop coalescence through a liquid/liquid interface. Phys Fluids 16:2170–2181

    Article  ADS  Google Scholar 

  35. Rother MA, Zinchenko AZ, Davis RH (1997) Buoyancy-driven coalescence of slightly deformable drops. J Fluid Mech 346:117–148

    Article  MATH  ADS  Google Scholar 

  36. Gopinath A, Chen SB, Koch DL (1997) Lubrication flows between spherical particles colliding in a compressible gas. J Fluid Mech 334:245–269

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., James, A.J. Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces. J Eng Math 59, 99–121 (2007). https://doi.org/10.1007/s10665-006-9091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9091-9

Keywords

Navigation