Skip to main content

Coalescence Dynamics of Drops over a Hydrophobic Surface

  • Chapter
  • First Online:
Drop Dynamics and Dropwise Condensation on Textured Surfaces

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

Fluid motion arising from the coalescence of two liquid drops is discussed. Experiments are described in which two small water drops are placed on a chemically textured hydrophobic surface (apparent contact angle ~150°), either in sessile or in pendant modes, respectively, just touching each other, under atmospheric conditions. Equal and unequal drop volumes have been studied. The Bond number of the combined drop falls within 0.01–0.04. The resulting coalescence process has been imaged by a high-speed camera, till the combined drop reaches equilibrium. The sequence of images arising from coalescence is analyzed. The position of the center of mass of the combined drop is determined, with displacement yielding the velocity components. The centroid displacement data show that two timescales describe the harmonic content of flow oscillations. These are related to the high initial flow velocities generated, followed by viscous relaxation of the fluid at later times. Scale analysis in terms of force pairs and energy components delineate experimental trends in velocity and wall shear stress. Shear stresses are momentarily developed at the wall at the short timescale, with a magnitude depending on the drop volumes. These are smaller in the pendant mode compared to the sessile. The possibility of including the coalescence details of individual droplet pairs in a complete dropwise condensation model is then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Gas-liquid interface area (m2)

E :

Surface energy (J)

E :

Excess surface energy function (−)

E CL :

Contact line dissipation (W)

E g :

Change of potential energy with time (W)

E k :

Change of kinetic energy rate with time (W)

E s :

Surface energy rate of a coalesced drop (W)

E vis :

Viscous dissipation (W)

f :

Roughness factor (−)

\( \overset{\rightharpoonup }{g} \) :

Acceleration due to gravity (m/s2)

m :

Spring stiffness (N/m)

m :

Mass (kg)

M, N:

Number of images and number of pixels in each image (−)

N p :

Number of pixels at the interface of a combined drop (−)

p :

Pressure (N/m2)

r :

Radius of the drop (m)

R :

Characteristic length (m)

Ravg = 1/RC:

Average instantaneous radius of the combined drop (m)

R b :

Radius of the combined drop footprint (m)

(RC):

Radius of curvature averaged over the air-water interface (m−1)

t :

Time (s); suffix IS is inertia-surface tension; IV is inertia-viscous; VS is viscous-surface tension

U :

Velocity scale (m/s)

u c :

x-component of centroid velocity (m/s)

\( {u}_{\mathrm{c}}^{\ast } \) :

Non-dimensional x-component of centroid velocity (−)

\( {u}_{\mathrm{res}}=\sqrt{u_{\mathrm{c}}^2+{v}_{\mathrm{c}}^2} \) :

Resultant velocity of the centroid (m/s)

V, Vcomb drop:

Volume and volume of the combined drop (m3)

v c :

y-component of centroid velocity (m/s)

\( {v}_{\mathrm{c}}^{\ast } \) :

Non-dimensional x-component of centroid velocity (−)

w i :

Area function for the ith pixel (−)

xc, yc:

x- and y-coordinates of centroid (m); time-average is indicated by an overbar

\( {x}_{\mathrm{c}}^{\ast },{y}_{\mathrm{c}}^{\ast } \) :

Non-dimensional x- and y-coordinates of centroid (−);

Bo:

Bond number, \( \frac{\rho {gR}^2}{\sigma } \)

We:

Weber number, \( \frac{\rho {U}^2R}{\sigma } \)

Fr:

Froude number, \( \frac{U^2}{gR} \)

Re:

Reynolds number, \( \frac{\rho UR}{\mu } \)

Oh:

Ohnesorge number, \( \frac{\mu }{\sqrt{\rho R\sigma}} \)

\( \dot{\gamma} \) :

Shear rate (s−1)

γ :

Non-dimensional hear rate (−)

θ :

Contact angle (°)

μ, ν:

Dynamic and kinematic viscosity (Pa s; m2/s)

ρ :

Fluid density (kg/m3)

σ :

Coefficient of surface tension (N/m)

τ :

Dimensionless time (−)

ζ :

Damping ratio (−)

1 :

Drop placed below (−)

2 :

Drop placed above (−)

3 :

Combined drop after coalescence (−)

c:

Critical (−)

CB:

Cassie-Baxter state (−)

eq:

Equilibrium (−)

lg:

Liquid-gas interface (−)

sg:

Solid-gas interface (−)

sl:

Solid-liquid interface (−)

W:

Wenzel state (−)

References

  • Aarts, D. G. A. L., Lekkerkerker, H. N. W., Guo, H., Wegdam, G. H., & Bonn, D. (2005). Hydrodynamics of droplet coalescence. Physical Review Letters, 95(16), 164503.

    Google Scholar 

  • Ajaev, V. S. (2012). Interfacial fluid mechanics: A mathematical modeling approach. New York: Springer.

    MATH  Google Scholar 

  • Andrieu, C., Beysens, D. A., Nikolayev, V. S., & Pomeau, Y. (2002). Coalescence of sessile drops. Journal of Fluid Mechanics, 453, 427–438.

    MathSciNet  MATH  Google Scholar 

  • Azehara, H., Kasanuma, Y., Ide, K., Hidaka, K., & Tokumotona, H. (2008). Distinct chemical contrast in adhesion force images of hydrophobic-hydrophilic patterned surfaces using multiwalled carbon nanotube probe tips. Japanese Journal of Applied Physics, 47, 3594–3599.

    Google Scholar 

  • Brenn, G., Valkovska, D., & Danov, K. D. (2001). The formation of satellite droplets by unstable binary drop collisions. Physics of Fluids, 13(9), 2463–2477.

    MATH  Google Scholar 

  • Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.

    Google Scholar 

  • Castrejón-Pita, J. R., Betton, E. S., Kubiak, K. J., Wilson, M. C. T., & Hutchings, I. M. (2011). The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics, 5(1), 014112.

    Google Scholar 

  • de Gennes, P.-G. (1985). Wetting: Static and dynamics. Review of Modern Physics, 57, 827–863.

    MathSciNet  Google Scholar 

  • Eggers, J. (1998). Coalescence of spheres by surface diffusion. Physical Review Letters, 80, 2634–2637.

    Google Scholar 

  • Eggers, J., Lister, J. R., & Stone, H. A. (1999). Coalescence of liquid drops. Journal of Fluid Mechanics, 401, 293–310.

    MathSciNet  MATH  Google Scholar 

  • Eiswirth, R. T., Bart, H.-J., Ganguli, A. A., & Kenig, E. Y. (2012). Experimental and numerical investigation of binary coalescence: Liquid bridge building and internal flow fields. Physics of Fluids, 24(6), 062108.

    Google Scholar 

  • Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2004). Digital image processing using MATLAB. Hoboken, NJ: Pearson Education Inc..

    Google Scholar 

  • Graham, P. J., Farhangi, M. M., & Dolatabadi, A. (2012). Dynamics of droplet coalescence in response to increasing hydrophobicity. Physics of Fluids, 24, 112105.

    Google Scholar 

  • Gunjan, M. R., Somwanshi, P., Agrawal, A., Khandekar, S., & Muralidhar, K. (2015). Recoil of drops during coalescence on superhydrophobic surfaces. Interfacial Phenomena and Heat Transfer, 3, 203–220.

    Google Scholar 

  • Kapur, N., & Gaskell, P. H. (2007). Morphology and dynamics of droplet coalescence on a surface. Physical Review Letters, 97, 056315, 1–4.

    Google Scholar 

  • Khandekar, S., & Muralidhar, K. (2014). Dropwise condensation on inclined textured surfaces (Springer briefs in applied sciences and technology). New York: Springer.

    MATH  Google Scholar 

  • Kim, W.-S., Jin, J.-H., & Bae, B.-S. (2006). Low adhesive force of fluorinated sol-gel hybrid materials for easy de-moulding in a UV-based nano-imprint process. Nanotechnology, 17(5), 1212.

    Google Scholar 

  • Larmour, I. A., Bell, S. E. J., & Saunders, G. C. (2007). Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angewandte Chemie International Edition, 46, 710–1712.

    Google Scholar 

  • Liao, Q., Zhu, X., Xing, S., & Wang, H. (2008). Visualization study on coalescence between pair of water drops on inclined surfaces. Experimental Thermal and Fluid Science, 32(8), 1647–1654.

    Google Scholar 

  • Menchaca-Rocha, A., Martínez-Dávalos, A., Núňez, R., Popinet, S., & Zaleski, S. (2001). Coalescence of liquid drops by surface tension. Physical Review E, 63(4), 046309.

    Google Scholar 

  • Nam, Y., Seo, D., Lee, C., & Shin, S. (2015). Droplet coalescence on water repellant surfaces. Soft Matter, 11(1), 154–160.

    Google Scholar 

  • Narhe, R., Beysens, D., & Nikolayev, V. S. (2004). Contact line dynamics in drop coalescences and spreading. Langmuir, 20, 1213–1221.

    Google Scholar 

  • Narhe, R., Beysens, D., & Nikolayev, V. S. (2005a). Dynamics of drop coalescence on a surface: The role of initial conditions and surface properties. International Journal of Thermophysics, 26, 8593–8597.

    Google Scholar 

  • Narhe, R., Beysens, D., & Nikolayev, V. S. (2005b). Dynamics of drop coalescence on a surface: The role of initial conditions and surface properties. International Journal of Thermophysics, 26(6), 1743–1757.

    Google Scholar 

  • Narhe, R. D., Beysens, D. A., & Pomeau, Y. (2008). Dynamic drying in the early-stage coalescence of droplets sitting on a plate. Europhysics Letters, 81(4), 46002.

    Google Scholar 

  • Nilsson, M. A., & Rothstein, J. P. (2011). The effect of contact angle hysteresis on droplet coalescence and mixing. Journal of Colloid and Interface Science, 363(2), 646–654.

    Google Scholar 

  • Pan, Y., & Suga, K. (2005). Numerical simulation of binary liquid droplet collision. Physics of Fluids, 17(8), 082105.

    MATH  Google Scholar 

  • Paulsen, J. D., Burton, J. C., & Nagel, S. R. (2011). Viscous to inertial crossover in liquid drop coalescence. Physical Review Letters, 106(11), 114501.

    Google Scholar 

  • Paulsen, J. D., Burton, J. C., Nagel, S. R., Appathurai, S., Harris, M. T., & Basaran, O. A. (2012). The inexorable resistance of inertia determines the initial regime of drop coalescence. Proceedings of the National Academy of Sciences, 109(18), 6857–6861.

    Google Scholar 

  • Qian, J., & Law, C. K. (1997). Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331, 59–80.

    Google Scholar 

  • Quéré, D. (2005). Non-sticking drops. Reports on Progress in Physics, 68, 2495–2532.

    Google Scholar 

  • Ren, S. L., Yang, S. R., Wang, J. Q., Liu, W. M., & Zhao, Y. P. (2004). Preparation and tribological studies of stearic acid self-assembled monolayers on polymer-coated silicon surface. Chemistry of Materials, 16, 428–434.

    Google Scholar 

  • Ristenpart, W. D., McCalla, P. M., Roy, R. V., & Stone, H. A. (2006). Coalescence of spreading droplets on a wettable substrate. Physical Review Letters, 97(6), 064501.

    Google Scholar 

  • Sellier, M., & Trelluyer, E. (2009). Modeling the coalescence of sessile droplets. Biomicrofluidics, 3(2), 022412.

    Google Scholar 

  • Sellier, M., Nock, V., & Verdier, C. (2011). Self-propelling, coalescing droplets. International Journal of Multiphase Flow, 37(5), 462–468.

    Google Scholar 

  • Somwanshi, P., Muralidhar, K., & Khandekar, S. (2018). Coalescence dynamics of sessile and pendant liquid drops placed on a hydrophobic surface. Physics of Fluids, 30, 092103.

    Google Scholar 

  • Sprittles, J. E., & Shikhmurzaev, Y. D. (2012). Coalescence of liquid drops: Different models versus experiment. Physics of Fluids, 24(12), 122105.

    MATH  Google Scholar 

  • Stalder, A. F., Kulik, G., Sage, D., Barbieri, L., & Hoffmann, P. (2006). A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286(1–3), 92–103.

    Google Scholar 

  • Tambe, N. S., & Bhushan, B. (2005). Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminium substrates. Nanotechnology, 16, 1549.

    Google Scholar 

  • Tang, C., Zhang, P., & Law, C. K. (2012). Bouncing, coalescence, and separation in head-on collision of unequal-size droplets. Physics of Fluids, 24(2), 022101.

    Google Scholar 

  • Thoroddsen, S. T., Takehara, K., & Etoh, T. G. (2005). The coalescence speed of a pendent and a sessile drop. Journal of Fluid Mechanics, 527, 85–114.

    MathSciNet  MATH  Google Scholar 

  • Thoroddsen, S. T., Qian, B., Etoh, T. G., & Takehara, K. (2007). The initial coalescence of miscible drops. Physics of Fluids, 19, 072110.

    MATH  Google Scholar 

  • Wang, H., Liao, Q., Zhu, X., Li, J., & Tian, X. (2010). Experimental studies of liquid droplet coalescence on the gradient surface. Journal of Superconductivity and Novel Magnetism, 23(6), 1165–1168.

    Google Scholar 

  • Wang, F.-C., Yang, F., & Zhao, Y.-P. (2011). Size effect on the coalescence-induced self-propelled droplet. Applied Physics Letters, 98, 053112.

    Google Scholar 

  • Weeks, M. (2007). Digital signal processing using MATLAB and wavelets. Hingham, MA: Infinity Science Press LLC.

    MATH  Google Scholar 

  • Wu, M., Cubaud, T., & Ho, C. M. (2004). Scaling law in liquid drop coalescence driven by surface tension. Physics of Fluids, 16, L51–L54.

    MATH  Google Scholar 

  • Xing, X. Q., Butler, D. L., Ng, S. H., Wang, Z., Danyluk, S., & Yang, C. (2007). Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model. Journal of Colloid and Interface Science, 311(2), 609–618.

    Google Scholar 

  • Yeh, S.-I., Fang, W.-F., Sheen, H.-J., & Yang, J.-T. (2013). Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluidics and Nanofluidics, 14, 785–795.

    Google Scholar 

  • Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of Royal Society of London, 95, 65–87.

    Google Scholar 

  • Zhang, F. H., Li, E. Q., & Thoroddsen, S. T. (2009). Satellite formation during coalescence of unequal size drops. Physical Review Letters, 102, 104502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Somwanshi, P., Muralidhar, K., Khandekar, S. (2020). Coalescence Dynamics of Drops over a Hydrophobic Surface. In: Drop Dynamics and Dropwise Condensation on Textured Surfaces. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-48461-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48461-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48460-6

  • Online ISBN: 978-3-030-48461-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics