Skip to main content

Advertisement

Log in

Mobility, distribution, and potential risk assessment of selected trace elements in soils of the Nile Delta, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Environmental pollution has received considerable attention over the last 50 years. Recently, there has been an increasing interest in pollution of the Nile Delta, Egypt, which is one of the longest settled deltaic systems in the world. Pollution in the delta is increasingly recognized as a serious health concern that requires proper management of ecosystems. Therefore, this project aimed to study the distribution and assess the risk associated with selected trace elements (TEs) in different soils (i.e., marine, fluvial, and lacustrine parent materials) in the northern Nile Delta. Mehlich-3 extraction was used to determine the availability of antimony, vanadium, strontium, and molybdenum in agro-ecosystems in this area and their spatial distributions were investigated. Five indices were used to assess ecological risk. Results showed that TEs were higher in the southern part of the study area because it is affected by multiple pollution sources. The available concentrations of TEs were Sr < V < Sb < Mo. The bioavailability of Sr was highest among the studied TEs. The studied indices suggested the study area was moderately polluted by Sr and Sb. Furthermore, the results showed that marine soils had higher TE levels then lacustrine and fluvial soils. The ecological risk assessment indicated that V and Mo were of natural origin, while Sr and Sb were anthropogenically linked. Therefore, the situation calls for planning to reduce pollution sources, especially in the protected north Nile Delta, so these productive soils do not threaten human and ecological health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi, M. R., Saraee, K. R. E., Fard, M. R., & Ghahfarokhi, M. B. (2015). Potential health concerns of trace elements and mineral content in commonly consumed greenhouse vegetables in Isfahan, Iran. Advanced Biomedical Research, 4(1), 214. https://doi.org/10.4103/2277-9175.166152.

    Article  CAS  Google Scholar 

  • Abu Khatita, A. M. (2011). Assessment of soil and sediment contamination in the Middle Nile Delta area (Egypt)—geo-environmental study using combined sedimentological, geophysical and geochemical methods. Doctoral thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Natur wissenschaftliche Fakultät, Germany.

  • ADEQ. (2016). Emerging contaminants in Arizona water. Phoenix: Arizona Department of Environmental Quality.

    Google Scholar 

  • Aitta, A., El-Ramady, H., Alshaal, T., El-Henawy, A., Shams, M., Talha, N., Elbehiry, F., & Brevik, E. (2019). Ecological risk assessment and spatial distribution of soil trace elements around Kitchener drain in the Northern Nile Delta, Egypt. Agriculture, 9, 152. https://doi.org/10.3390/agriculture9070152.

    Article  Google Scholar 

  • Anderson, C. G. (2012). The metallurgy of antimony. Chemie der Erde – Geochemistry, 72, 3–8. https://doi.org/10.1016/j.chemer.2012.04.001.

    Article  CAS  Google Scholar 

  • Angula, E. (1996). The Tomlinson Pollution Index applied to heavy metal, Mussel–Watch data: a useful index to assess coastal pollution. Science of the Total Environment, 187, 19–56. https://doi.org/10.1016/0048-9697(96)05128-5.

    Article  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2012). Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India. Environmental Monitoring and Assessment, 184, 4191–4206. https://doi.org/10.1007/s10661-011-2255-8.

    Article  CAS  Google Scholar 

  • Appleton, J. D., & Cave, M. R. (2018). Variation in soil chemistry related to different classes and eras of urbanisation in the London area. Applied Geochemistry, 90, 13–24. https://doi.org/10.1016/j.apgeochem.2017.12.024.

    Article  CAS  Google Scholar 

  • Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Science of the Total Environment, 653, 1458–1512. https://doi.org/10.1016/j.scitotenv.2018.10.312.

    Article  CAS  Google Scholar 

  • Casado, M., Anawar, H. M., Garcia-Sanchez, A., & Regina, I. S. (2007). Antimony and arsenic uptake by plants in an abandoned mining area. Communications in Soil Science and Plant Analysis, 38(9-10), 1255–1275. https://doi.org/10.1080/00103620701328412.

    Article  CAS  Google Scholar 

  • Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440. https://doi.org/10.1016/j.chemosphere.2006.09.030.

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., & Cheng, X. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31–52. https://doi.org/10.1016/j.gexplo.2013.08.012.

    Article  CAS  Google Scholar 

  • Cidu, R., Biddau, R., Dore, E., & Vacca, A. (2013). Antimony dispersion at abandoned mines in Sardinia, Italy. Procedia Earth and Planetary Science, 7, 171–174. https://doi.org/10.1016/j.proeps.2013.03.008.

    Article  CAS  Google Scholar 

  • Cornelis, G., Van Gerven, T., & Vandecasteele, C. (2012). Antimony leaching from MSWI bottom ash: modeling of the effect of pH and carbonation. Waste Management, 32, 278–286. https://doi.org/10.1016/j.wasman.2011.09.018.

    Article  CAS  Google Scholar 

  • Dehghani, S., Moore, F., Keshavarzi, B., & Hale, B. A. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92–103. https://doi.org/10.1016/j.ecoenv.2016.10.037.

    Article  CAS  Google Scholar 

  • El Banna, M. M., & Frihy, O. E. (2009). Natural and anthropogenic influences in the northeastern coast of the Nile delta, Egypt. Environmental Geology, 57, 1593–1602. https://doi.org/10.1007/s00254-008-1434-6.

    Article  Google Scholar 

  • Elbasiouny, H., & Elbehiry, F. (2019). Geology. In H. El-Ramady Alshaal, T. N. Bakr, T. Elbana, E. Mohamed, & A.-A. Belal (Eds.), The soils of Egypt (pp. 93–110). Cham: Springer Nature.

    Chapter  Google Scholar 

  • Elbasiouny, H., Abowaly, M., Abu Alkheir, A., & Gad, A. (2014). Spatial variation of soil carbon and nitrogen pools by using ordinary kriging method in an area of north Nile Delta, Egypt. Catena, 113, 70–78. https://doi.org/10.1016/j.catena.2013.09.008.

    Article  CAS  Google Scholar 

  • Elbehiry, F., Elbasiouny, H., & El-Henawy, A. (2017). Boron: spatial distribution in an area of North Nile Delta, Egypt. Communications in Soil Science and Plant Analysis, 48(3), 294–306. https://doi.org/10.1080/00103624.2016.1269795.

    Article  CAS  Google Scholar 

  • Evans, L. J., & Barabash, S. J. (2010). Molybdenum, silver, thallium and vanadium. In P. S. Hooda (Ed.), Trace elements in soils (pp. 515–549). Hoboken: Blackwell.

    Chapter  Google Scholar 

  • Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., & Guo, J. (2013). The uptake and detoxification of antimony by plants: a review. Environmental and Experimental Botany, 96, 28–34. https://doi.org/10.1016/j.envexpbot.2013.08.006.

    Article  CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal, 23(7), 779–799. https://doi.org/10.1080/15320383.2014.872597.

    Article  CAS  Google Scholar 

  • Fu, J., Hu, X., Tao, X. C., Yu, H. X., & Zhang, X. W. (2013). Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere, 93, 1887–1895. https://doi.org/10.1016/j.chemosphere.2013.06.061.

    Article  CAS  Google Scholar 

  • George, J., Masto, R. E., Ram, L. C., Das, T. B., Rout, T. K., & Mohan, M. (2015). Human exposure risks for metals in soil near a coal-fired power-generating plant. Archives of Environmental Contamination and Toxicology, 68, 451–561. https://doi.org/10.1007/s00244-014-0111-x.

    Article  CAS  Google Scholar 

  • Giuseppe, D. D., Antisari, L. V., Ferronato, C., & Bianchini, G. (2014). New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chemie der Erde, 74, 615–623. https://doi.org/10.1016/j.chemer.2014.02.004.

    Article  CAS  Google Scholar 

  • Gu, J., Salem, A., & Chen, Z. (2013). Lagoons of the Nile delta, Egypt, heavy metal sink: with a special reference to the Yangtze estuary of China. Estuarine, Coastal and Shelf Science, 117, 282–292. https://doi.org/10.1016/j.ecss.2012.06.012.

    Article  CAS  Google Scholar 

  • Gu, Y.-G., Gao, Y.-P., & Lin, Q. (2016). Contamination, bio accessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58. https://doi.org/10.1016/j.apgeochem.2016.02.004.

    Article  CAS  Google Scholar 

  • Guo, X. J., Wu, Z. J., He, M. C., Meng, X. G., Jin, X., Qiu, N., & Zhang, J. (2014). Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. Journal of Hazardous Materials, 276, 339–345. https://doi.org/10.1016/j.jhazmat.2014.05.025.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution-control—a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Herath, I., Vithanag, M., & Bundschuh, J. (2017). Antimony as a global dilemma: geochemistry, mobility, fate and transport. Environmental Pollution, 223, 545–559. https://doi.org/10.1016/j.envpol.2017.01.057.

    Article  CAS  Google Scholar 

  • Hu, B., Li, J., Zhao, J., Yang, J., Bai, F., & Dou, Y. (2013). Heavy metal in surface sediments of the Liaodong Bay, Bohai Sea: distribution, contamination, and sources. Environmental Monitoring and Assessment, 185(6), 5071–5083. https://doi.org/10.1007/s10661-012-2926-0.

    Article  CAS  Google Scholar 

  • Huang, Y., Chen, Z., & Liu, W. (2012). Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V). Plant and Soil, 352, 41–49. https://doi.org/10.1007/s11104-011-0973-x.

    Article  CAS  Google Scholar 

  • Ilgen, A. G., & Trainor, T. P. (2011). Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1. Environmental Science & Technology, 46, 843–851. https://doi.org/10.1021/es203027v.

    Article  CAS  Google Scholar 

  • Jiménez-Ballesta, R., García-Navarro, F. J., Bravo, S., Amoros, J. A., Pérez de los Reyes, C., & Mejias, M. (2017). Environmental assessment of potential toxic elements contents in the inundated floodplain área of Tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health, 39, 1159–1177. https://doi.org/10.1007/s10653-016-9884-3.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Kabata-Pendias, A., & Sadurski, W. (2004). Trace elements and compounds in soil. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment (2nd ed., pp. 79–99). Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  • Kadunas, V., Budavicius, R., Gregorauskiene, V., Katinas, V., Kliuugiene, E., Radzevicius, A., & Taraskievicius, R. (1999). Geochemical atlas of Lithuania. Vilnius: Geological Institute.

    Google Scholar 

  • Khaledian, Y., Pereira, P., Brevik, E. C., Pundyte, N., & Paliulis, D. (2017). The influence of organic carbon and ph on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degradation and Development, 28, 345–354. https://doi.org/10.1002/ldr.2638.

    Article  Google Scholar 

  • Khalil, M., & El-Gharabawy, S. (2016). Evaluation of mobile metals in sediments of Burullus Lagoon, Egypt. Marine Pollution Bulletin, 109, 655–660.

    Article  CAS  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by Medieval metallurgical activity: a case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.marpolbul.2016.04.065.

    Article  CAS  Google Scholar 

  • Kubota, J. (1977). Molybdenum status of United States soils and plants. In W. R. Chappell & K. K. Peterson (Eds.), Molybdenum in the environment (pp. 555–581). New York: Marcel Dekker.

    Google Scholar 

  • Kumpiene, J., Giagnoni, L., Marschner, B., Denys, S., Mench, M., Adriaensen, K., Vangronsveld, J., Puschenreiter, M., & Renella, M. (2017). Assessment of methods for determining bioavailability of trace elements in soils: a review. Pedosphere, 27(3), 389–406. https://doi.org/10.1016/S1002-0160(17)60337-0.

    Article  Google Scholar 

  • Leleyter, L., & Probst, J. L. (1999). A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. International Journal of Environmental Analytical Chemistry, 73, 109–128. https://doi.org/10.1080/03067319908032656.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., Howard, K. W., Wu, J., & Lyu, X. (2014). Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environmental Monitoring and Assessment, 186(3), 1385–1398. https://doi.org/10.1007/s10661-013-3461-3.

    Article  CAS  Google Scholar 

  • Lin, Y., Ma, J., Zhang, Z., Zhu, Y., Hou, H., Zhao, L., Sun, Z., Xue, W., & Shi, H. (2018). Linkage between human population and trace elements in soils of the Pearl River Delta: implications for source identification and risk assessment. Science of the Total Environment, 610–611, 944–950. https://doi.org/10.1016/j.scitotenv.2017.08.147.

    Article  CAS  Google Scholar 

  • Liu, J., Ma, K., & Qu, L. (2015). Ecological risk assessments and context-dependence analysis of heavy metal contamination in the sediments of mangrove swamp in Leizhou Peninsula, China. Marine Pollution Bulletin, 100, 224–230. https://doi.org/10.1016/j.marpolbul.2015.08.046.

    Article  CAS  Google Scholar 

  • Liu, X., Jiang, J., Yan, Y., Dai, Y., Deng, B., Ding, S., Su, S., Sun, W., Li, Z., & Gan, Z. (2018). Distribution and risk assessment of metals in water, sediments, and wild fish from Jinjiang River in Chengdu, China. Chemosphere, 196, 45–52. https://doi.org/10.1016/j.chemosphere.2017.

    Article  CAS  Google Scholar 

  • Maguire, R. O., Rubæk, G. H., Haggard, B. E., & Foy, B. H. (2009). Critical evaluation of the implementation of mitigation options for phosphorus from field to catchment scales. Journal of Environmental Quality, 38(5), 1989–1997. https://doi.org/10.2134/jeq2007.0659.

    Article  CAS  Google Scholar 

  • Mazurek, R., Kowalska, J., Gasiorek, M., Zadrozny, P., Jozefowska, A., Zaleski, T., Kepka, W., MarylaTymczuk, M., & Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1984). Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416. https://doi.org/10.1080/00103628409367568.

    Article  CAS  Google Scholar 

  • Mehr, M. R., Keshavarzi, B., Moore, F., Sharifi, R., Lahijanzadeh, A., & Kermani, M. (2017). Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. Journal of African Earth Sciences, 132, 16–26. https://doi.org/10.1016/j.jafrearsci.2017.04.026.

    Article  CAS  Google Scholar 

  • Mishra, P., Singh, S. K., Srivastava, P. C., & Singh, S. (2006). Distribution of molybdenum and boron in some soils of northern alluvial plain of UP and Uttaranchal in relation to soil characteristics. Agropedology, 16(1), 60–62.

    Google Scholar 

  • Morgan, R. (2013). Soil, heavy metals, and human health. In E. C. Brevik & L. C. Burgess (Eds.), Soils and human health (pp. 59–82). Boca Raton: CRC.

    Google Scholar 

  • Müller, G. (1979). Heavy-metals in sediment of the Rhine-changes since 1971. Umschau in Wissenschaft und Technik, 79(24), 778–783.

    Google Scholar 

  • Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2015). Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramic Societies, 3, 245–250. https://doi.org/10.1016/j.jascer.2015.04.002.

    Article  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5.

    Article  CAS  Google Scholar 

  • Negm, A. M., Saavedra, O., & El-Adawy, A. (2017). Nile Delta biography: challenges and opportunities. In A. M. Negm, O. Saavedra, & A. El-Adawy (Eds.), The Nile Delta (pp. 3–18). New York: Springer International Publishing AG.

    Chapter  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In J. M. Bigham (Ed.), Methods of soil analysis: part 3—chemical methods (pp. 961–1010). Madison: Soil Science Society of America.

    Google Scholar 

  • Pekey, H., Karakas, D., Ayberk, S., Tolun, L., & Bakoglu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48, 946–953. https://doi.org/10.1016/j.marpolbul.2003.11.023.

    Article  CAS  Google Scholar 

  • Roussiez, V., Ludwig, W., Probst, J. L., & Monaco, A. (2005). Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environmental Pollution, 138(1), 167–177. https://doi.org/10.1016/j.envpol.2005.02.004.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1995). Soil Science Methods & Applications. Library of Congress Cataloging – in – Publication data, New York, USA.

  • Schwarz, G., & Belaidi, A. A. (2013). Molybdenum in human health and disease. Metal Ions in Life Sciences, 13, 415–450. https://doi.org/10.1007/978-94-007-7500-8_13.

    Article  Google Scholar 

  • Shangguan, Y., Zhao, L., Qin, Y., Hou, H., & Zhang, N. (2016). Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments. Ecotoxicology and Environmental Safety, 133, 1–9. https://doi.org/10.1016/j.ecoenv.2016.06.030.

    Article  CAS  Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., & Summner, M. E. (1996). Methods of soil analysis: chemical methods, Part 3. Madison, WI: Agronomy Society of America and Soil Science Society of America.

  • Steffan, J. J., Brevik, E. C., Burgess, L. C., & Cerdà, A. (2018). The effect of soil on human health: an overview. European Journal of Soil Science, 69, 159–171. https://doi.org/10.1111/ejss.12451.

    Article  CAS  Google Scholar 

  • Sumner, M.E., Miller, W.P. (1996). Cation exchange capacity and exchange coefficients. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Inc., Madison, Wisconsin, pp. 1201–1229.

  • Sun, H. (2018). Association of soil selenium, strontium, and magnesium concentrations with Parkinson’s disease mortality rates in the USA. Environmental Geochemistry and Health, 40, 349–357. https://doi.org/10.1007/s10653-017-9915-8.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473.

    Article  CAS  Google Scholar 

  • Tapia, J., Davenport, J., Townley, B., Dorador, C., Schneider, B., Tolorza, V., & von Tümpling, W. (2018). Sources, enrichment, and redistribution of As, Cd, Cu, Li, Mo, and Sb in the Northern Atacama Region, Chile: implications for arid watersheds affected by mining. Journal of Geochemical Exploration, 185, 33–51. https://doi.org/10.1016/j.gexplo.2017.10.021.

    Article  CAS  Google Scholar 

  • Telford, K., Maher, W., Krikowa, F., Foster, S., Ellwood, M. J., Ashley, P. M., Lockwood, P. V., & Wilson, S. C. (2009). Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environmental Chemistry, 6, 133–143. https://doi.org/10.1071/EN08097.

    Article  CAS  Google Scholar 

  • Tian, K., Huang, B., Xing, Z., & Hu, W. (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037.

    Article  CAS  Google Scholar 

  • Tiberg, C., Bendz, D., Theorin, G., & Kleja, D. B. (2017). Evaluating solubility of Zn, Pb, Cu and Cd in pyrite cinder using leaching tests and geochemical modelling. Applied Geochemistry, 85, 106–117. https://doi.org/10.1016/j.apgeochem.2017.09.007.

    Article  CAS  Google Scholar 

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoländer wissenschaftliche Meeresuntersuchungen, 33, 566–575. https://doi.org/10.1007/BF02414780.

    Article  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Dou, X., Bolan, N. S., Yang, J. E., & Ok, Y. S. (2013). Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Journal of Colloid and Interface Science, 406, 217–224. https://doi.org/10.1016/j.jcis.2013.05.053.

    Article  CAS  Google Scholar 

  • Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14, 257–263. https://doi.org/10.1016/j.aasci.2016.08.011.

    Article  Google Scholar 

  • Wang, W., Lai, Y., Ma, Y., Liu, Z., Wang, S., & Chenglin, H. (2016). Heavy metal contamination of urban topsoil in a petrochemical industrial city in Xinjiang, China. Journal of Arid Land, 8(6), 871–880. https://doi.org/10.1007/s40333-016-0057-0.

    Article  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behavior of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, 158, 1169–1181. https://doi.org/10.1016/j.envpol.2009.10.045.

    Article  CAS  Google Scholar 

  • Xia, P., Meng, X., Feng, A., Yin, P., Zhang, J., & Wang, X. (2012). Geochemical characteristics of heavy metals in coastal sediments from the northern Beibu gulf (SW China): the background levels and recent contamination. Environmental Earth Sciences, 66(5), 1337–1344. https://doi.org/10.1007/s12665-011-1343-y.

    Article  CAS  Google Scholar 

  • Xianmao, L., Guogang, H., & Huijan, W. (1990). Effects of molybdenum on etiology, pathogenesis and prevention of esophageal cancer. In T. Jian’an, P. J. Peterson, L. Ribang, & W. Wuyi (Eds.), Environmental life elements and health (pp. 309–317). Beijing: Science Press.

    Google Scholar 

  • Yildiz, N., Aydemir, O., Aydin, A., & Ulusu, F. (1998). Suitability of Mehlich III method for assessing the plant nutrients in Erzurum plain and acid soils. In D. Anac & P. Martin-PrÉvel (Eds.), Improved crop quality by nutrient management (pp. 281–284). Dordrecht: Springer.

    Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051–1070. https://doi.org/10.1006/ecss.2001.0879.

    Article  CAS  Google Scholar 

  • Zhao, Q., Liu, S., Deng, L., Dong, S., & Wang, C. (2013). Longitudinal distribution of heavy metals in sediments of a canyon reservoir in Southwest China due to dam construction. Environmental Monitoring and Assessment, 185, 6101–6110. https://doi.org/10.1007/s10661-012-3010-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Brevik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbehiry, F., Elbasiouny, H., El-Ramady, H. et al. Mobility, distribution, and potential risk assessment of selected trace elements in soils of the Nile Delta, Egypt. Environ Monit Assess 191, 713 (2019). https://doi.org/10.1007/s10661-019-7892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7892-3

Keywords

Navigation