Skip to main content

Advertisement

Log in

Multi-criteria decision model for assessing groundwater pollution risk in the urban-rural interface of Mar del Plata City (Argentina)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In developing countries, conflict between the objectives of environmental policies and those focused on economic development, a low availability of human resources and infrastructure, and the lack of continuity and incentives, contribute to the inability to successfully implement environmental policies. Moreover, in these countries, population growth in the peri-urban areas has resulted in serious water pressures, poor water management, and severe non-point source pollution. The aim of this paper is to implement a procedure of aquifer pollution risk assessment for identifying priority areas in an urban-rural interface based on multi-criteria decision tools. In this sense, a multi-criteria decision model was designed, in terms of environmental and socio-economic criteria and sub-criteria relevant to water resource management, by using the software Criterium Decision Plus 4.0. This model was applied to the northwestern peri-urban area of Mar del Plata City, Argentina, which is embedded in the second most important fruit-horticultural belt of the country. Here, groundwater is the only source of water supply. The proposed decision model allowed establishing a ranking of priority areas for defining action guidelines in order to minimize the risk of pollution of the aquifer. Aquifer pollution hazard criterion mainly contributes to alternatives classified as very high priority whilst in the case of low and very low priority classes, social vulnerability criterion mostly influences the final results. The first alternatives will require an intervention in a short-term time horizon, and the last ones must be monitored in order to avoid their shift to a worse environmental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281.

    Article  Google Scholar 

  • Akissa, B. (2001). Urban and peri-urban water-related relationships: closing the loops. Environmental Management and Health, 12, 364–376.

    Article  Google Scholar 

  • Aliewi, A., & Al-Khatibb, I. A. (2015). Hzard and risk assessment of pollution on the groundwater resources and residents’ health of Salfit District, Palestine. Journal of Hydrology: Regional Studies, 4, 472–486.

    Google Scholar 

  • Allen, A. (2003). Environmental planning and management of the periurban interface: perspective on an emerging field. Environment and Urbanization, 15, 135–147.

    Article  Google Scholar 

  • Aller, L., Bennett, T., Lehr, J., & Petty, R. (1987). DRASTIC: a standardized system for evaluating ground water pollution. Doc. EPA/600/2-85/018.

  • Allouche, N., Maanan, M., Gontara, M., Rollo, N., Jmal, I., & Bouri, S. (2017). A global risk approach to assessing groundwater vulnerability. Environmental Modelling & Software, 88, 168–182.

    Article  Google Scholar 

  • Auge, M. (2004). Vulnerabilidad de Acuíferos: Conceptos y Métodos. E book: 1–38. RedIRIS. Red Académica y Científica de España en Internet. http://tierra.rediris.es/hidrored/ebooks/vulnerabilidad.html. Accessed 10 Mar 2007.

  • Baccaro, K., Degorgue, M., Lucca, M., Picone, L., Zamuner, E., & Andreoli, Y. (2006). Calidad del agua para consumo humano y riego en muestras del cinturón hortícola de Mar del Plata. Revista de Investigaciones Agropecuarias, 35(3), 95–110.

    Google Scholar 

  • Bankoff, G., Frerks, G., & Hilhorst, D. (2004). Mapping Vulnerability. Disasters, Development & People. London: EarthScan Pub. Ltd 236 pp.

    Google Scholar 

  • Bartzas, G., Tinivella, F., Medini, L., Zaharaki, D., & Komnitsas, K. (2015). Assessment of groundwater contamination risk in an agricultural area in north Italy. Information Processing in Agriculture, 2, 109–129.

    Article  Google Scholar 

  • Bedmar, F., Gianelli, V., Angelini, H., & Viglianchino, L. (2015). Riesgo de contaminación del agua subterránea con plaguicidas en la cuenca del arroyo El Cardalito, Argentina. Revista de Investigaciones Agropecuarias, 41(1), 70–82.

    Google Scholar 

  • Belderrain, M., Lacaze, M.V., & Atucha, A. (2015). La organización del trabajo en la frutihorticultura de General Pueyrredon: análisis de su sostenibilidad jurídica. Portal de Promoción y Difusión Pública del Conocimiento Académico y Científico, FCEyS, UNMdP. http://nulan.mdp.edu.ar. Accessed 20 Nov 2018.

  • Bennett, H. H. (2001). Soil conservation for sustainable agriculture. New Delhi: Agrobios.

    Google Scholar 

  • Brown, J., Thi Hien, V., McMahan, L., Jenkins, M. W., Thie, L., Liang, K., Printy, E., & Sobsey, M. D. (2013). Relative benefits of on-plot water supply over other ‘improved’ sources in rural Vietnam. Tropical Medicine and International Health, 18(1), 65–74.

    Article  Google Scholar 

  • Busck, A., Kristenson, S. P., Praestholm, S., Reenberg, A., & Primdahl, J. (2006). Land system changes in the context of urbanisation: examples from the peri-urban area of Greater Copenhagen. Geografisk Tidsskrift-Danish Journal of Geography, 106, 21–34.

    Article  Google Scholar 

  • Calderon, G. (2017). Implementación de la política de ordenamiento territorial en el área serrana del Partido de General Pueyrredon (Provincia de Buenos Aires, Argentina). Revista I+A Investigación + Acción, 20(20), 39–62 ISSN 2250-818X (on-line).

    Google Scholar 

  • Curran, S. R., & Sherbinin, A. (2004). Completing the picture: The challenges of bringing “consumption” into the population– environment equation. Population and Environment, 26(2), 107–131.

    Article  Google Scholar 

  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the vulnerability of people and places: a case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.

    Article  Google Scholar 

  • Daga, D. Y., Zulaica, L., Ferraro, R., & Vazquez, P. (2017). Expansión e intensificación hortícola en el partido de General Pueyrredon, Argentina: Sustentabilidad ecológica e impactos ambientales. Revista Geografia em Questão, 10(2), 102–117.

    Google Scholar 

  • Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldscheider, N., Neale, N., Popescu, I. C., & Zwahlen, F. (2002). Main concepts of the European approach for (karst) groundwater vulnerability assessment and mapping. Hydrogeology Journal, 10(2), 340–345.

    Article  Google Scholar 

  • De Gerónimo, E., Aparicio, V. C., Bárbaro, S., Portocarrero, R., Jaime, S., & Costa, J. L. (2014). Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere, 107, 423–431.

    Article  CAS  Google Scholar 

  • De Groot, R. S., Wilson, M., & Boumans, R. (2002). A typology for the description, classification and valuation of ecosystem functions goods and services. Ecological Economics, 41, 393–408.

    Article  Google Scholar 

  • del Río, J. L. y Demarco, S. G. (2012). Minería en áreas periurbanas: una aproximación multidimensional. - 1a ed. - (pp. 318). Buenos Aires: Edutecne.

  • Della Spina, L. (2016). Evaluation decision support models: highest and best use choice. Procedia - Social and Behavioral Sciences, 223, 936–943.

    Article  Google Scholar 

  • Ducci, D. (1999). GIS techniques for mapping groundwater contamination risk. Natural Hazards, 20, 279–294.

    Article  Google Scholar 

  • Edwards, W. (1977). How to use multiattribute utility theory for social decision making. IEEE Transactions on Systems, Man, and Cybernetics, 7, 326–340.

    Article  Google Scholar 

  • ESRI (Environment System Research Institute). (2007). http://www.esri.com. Accessed 10 May 2007.

  • Ferretti, V., & Montibeller, G. (2016). Key challenges and meta-choices in designing and applying multi-criteria spatial decision support systems. Decision Support Systems, 84, 41–52.

    Article  Google Scholar 

  • Foster, S., Hirata, R., (1988). Determinación del riesgo de contaminación de aguas subterráneas, CEPIS, Lima Perú.

  • Foster, S., Hirata, R., Gomez, D., D’Elia, M., & Paris, M. (2002). Groundwater quality protection: a guide for water service companies, municipal authorities and environment agencies. Washington: The World Bank.

    Book  Google Scholar 

  • Frigerio, I., Ventura, S., Strigaro, D., Mattavelli, M., De Amicis, M., Mugnano, S., & Boffi, M. (2016). A GIS-based approach to identify the spatial variability of socialvulnerability to seismic hazard in Italy. Applied Geography, 74, 12–22.

    Article  Google Scholar 

  • Frind, E., Molson, J., & Rudolph, D. (2006). Well vulnerability: a quantitative approach for source water protection. Groundwater, 44(5), 732–742.

    CAS  Google Scholar 

  • Global Water Partnership (GWP). (2017). Integrated water resources management (IWRM) Toolbox. https://www.gwp.org/en/learn/iwrm-toolbox/about_iwrm_toolbox/. Accessed 23 Aug 2018.

  • Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), 549–559.

    Article  CAS  Google Scholar 

  • Gogu, R., Hallet, V., & Dassargues, A. (2003). Comparison of aquifer vulnerability assessment techniques. Application to the Néblon Riverbasin (Belgium). Environmental Geology, 44, 881–892.

    Article  Google Scholar 

  • Grondona, S., Sagua, M., Massone, H., & Miglioranza, K. (2015). Evaluación de la vulnerabilidad social asociada al consumo de agua subterránea en la cuenca del Río Quequén Grande, Provincia De Buenos Aires, Argentina. Revista Internacional de Contaminación Ambiental, 31(4), 351–359.

    Google Scholar 

  • Gurtner, B. (2010). The Financial and Economic Crisis and Developing Countries. International Development Policy, Revue internationale de politique de développement (pp. 189–213). Accessed Online 18 Feb 2019. http://journals.openedition.org/poldev/144; https://doi.org/10.4000/poldev.144.

  • GWP. Global Water Partnership. (2000). Integrated water resources management. Stockholm, Sweden, 71 pp. ISBN: 91-630-9229-8.

  • Hajkowicz, S., & Collins, K. (2007). A review of multiple criteria analysis for water resource planning and management. Water Resources Management, 21, 1553–1566.

    Article  Google Scholar 

  • Hamza, S. M., Ahsan, A., Imteaz, M. A., Rahman, A., Mohammad, T. A., & Ghazal, A. H. (2015). Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environment and Earth Science, 73, 3063–3076.

    Article  Google Scholar 

  • Howard, K. W. F. (2002). Urban groundwater issues - an introduction. In K. W. F. Howard & R. G. Israfilov (Eds.), Current problems of hydrology in urban areas, urban agglomerates and industrial centres. Dordrecht: Springer 1–16 pp.

    Chapter  Google Scholar 

  • INDEC, National Institute of Statistics and Censuses. (2012). Population, households and housing 2010 National Census. Serie B No. 2 (1st ed.). Buenos Aires: INDEC.

    Google Scholar 

  • INTA, National Institute of Agricultural Technology. (2008). Geospatial Database of Argentina. http://geointa.inta.gov.ar/. Accessed 9.04.12.

  • Jenks, G. (1977). Optimal data classification for choropleth maps. Department of Geography occasional paper no. 2. Lawrence: University of Kansas.

    Google Scholar 

  • Jenks, G., & Caspall, F. (1971). Error on choropleth maps: definition, measurement, and reduction. Annals of the Association of American Geographers, 61(2), 217–244.

    Article  Google Scholar 

  • Johnson, M. P. (2001). Environmental impacts of urban sprawl: a survey of the literature and proposed research agenda. Environment & Planning A, 33(4), 717–735.

    Article  Google Scholar 

  • Karimipour, F., Delavar, M. R., & Kinaie, M. (2005). Water quality management using GIS data mining. Journal of Environmental Informatics, 5, 61–71.

    Article  Google Scholar 

  • Kavurmaci, M. (2016). Evaluation of groundwater quality using a GIS-MCDA-based model: a case study in Aksaray, Turkey. Environment and Earth Science, 75, 1258.

    Article  Google Scholar 

  • Lima, M. L., Zelaya, K., & Massone, H. E. (2011). Groundwater vulnerability assessment combining the drastic and dyna-clue model in the Argentine pampas. Environmental Management, 47(5), 828–839.

    Article  Google Scholar 

  • Lima, M. L., Romanelli, A., & Massone, H. (2013). Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina. Environmental Monitoring Assessment, 185(6), 5125–5139. https://doi.org/10.1007/s10661-012-2930-4.

    Article  Google Scholar 

  • Lima, M. L., Romanelli, A., & Massone, H. (2015). Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed. Science of the Total Environment, 530–531, 333–346.

    Article  CAS  Google Scholar 

  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20, 703–726.

    Article  Google Scholar 

  • Mardani, A., Jusoh, A., Nor, K. M. D., Khalifah, Z., Zakwan, N., & Valipou, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research, 28(1), 516–571.

    Google Scholar 

  • Massone, H., & Martinez, D. (2008). Consideraciones metodológicas acerca del proceso de gestión del impacto y riesgo de contaminación de acuíferos (pp. 9–22). Publicación especial, Revista Ingenierias, Universidad de Medellín, Vol. 7 Núm. 12. ISSN 1692-3324 Colombia.

  • Massone, H., Quiroz Londoño, O. M., & Martinez, D. (2010). Enhanced groundwater vulnerability assessment in geological homogeneous areas: a case study from the Argentine Pampas. Hydrogeology Journal, 18(2), 371–379.

    Article  Google Scholar 

  • MEA, Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: wetlands and water synthesis millennium ecosystem assessment report to the Ramsar Convention. Washington DC: World Resources Institute.

    Google Scholar 

  • Mendoza, J. A., & Barmen, G. (2006). Assessment of groundwater vulnerability in the Rio Artiguas basin, Nicaragua. Environmental Geology, 50, 569–580.

    Article  CAS  Google Scholar 

  • Nadiri, A. A., Sadeghfam, S., Gharekhani, M., Khatibi, R., & Akbari, E. (2018). Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using ‘risk cells’. Journal of Environmental Management, 217, 654–667.

    Article  Google Scholar 

  • Nixdorf, E., Sun, Y., Lin, M., & Kolditz, O. (2017). Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. Science of the Total Environment, 605–606, 598–609.

    Article  CAS  Google Scholar 

  • Oliveira Tavares, A., Pinto dos Santos, P., Freire, P., Bustorff Fortunato, A., Rilo, A., & Sá, L. (2015). Flooding hazard in the Tagus estuarine area: the challenge of scale in vulnerability assessments. Environmental Science & Policy, 51, 238–255.

    Article  Google Scholar 

  • Perles Roselló, M. J., Vías Martinez, J. M., & Andreo Navarro, B. (2009). Vulnerability of human environment to risk: case of groundwater contamination risk. Environment International, 35, 325–335.

    Article  CAS  Google Scholar 

  • Piga, F. G., Guerra RodriguesTão, N., Herrmann Ruggiero, M., de Souza Marquezola, D., de Oliveira Boina, D. L., Costa, W. C., de Lollo, J. A., Lorandi, R., Melanda, E. A., & Moschini, L. E. (2017). Multi-criteriapotentialgroundwatercontamination and human activities: Araras watershed, Brazil. Brazilian Journal of Water RBRH, 22, e56.

    Google Scholar 

  • Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energyplanning – a review. Renewable and Sustainable Energy Reviews, 8, 365–381.

    Article  Google Scholar 

  • Ravetz, J., Fertner, C., & Nielsen, T. S. (2013). The dynamics of peri-urbanization. In: Peri-urban futures: Scenarios and models for land use change in Europe. Nilsson K., Pauleit S., Bell S., Aalbers C., & Nielsen T. S. (Eds). 13–44 pp.

  • Ravi Shankar, M. N., & Mohan, G. (2006). Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane District, Western Deccan Volcanic Province of India. Environmental Geology, 49, 909–998.

    Google Scholar 

  • Romanelli, A., Lima, M. L., Massone, H. E., & Esquius, K. S. (2014). Spatial decision support system for assessing lake pollution hazard: southeastern pampean shallow lakes (Argentina) as a case study. Wetlands Ecology and Management, 22(3), 247–265. https://doi.org/10.1007/s11273-013-9327-1.

    Article  Google Scholar 

  • Rothwell, A. B., Page, G., & Bellotti, W. (2015). Feeding and housing the urban population: environmental impacts at the peri-urban interface under different land use scenarios. Land Use Policy, 377–388.

  • Saaty, T. L. (1992). Multicriteria decision making - the analytical hierarchy process. Pittsburg: RWS Publications.

    Google Scholar 

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hier-archy process (2nd ed.). Pittsburgh: RWS Publications.

    Google Scholar 

  • Sagua, M., Mikkelsen, C., Tomás, M., & Calderon, G. (2014). Los instrumentos de planificación y gestión para el Ordenamiento Territorial en el Corredor Mar del Plata-Tandil. In G. Badenes & M. A. Marin (Eds.), Anales X Bienal del Coloquio de Transformaciones Territoriales ‘Desequilibrios regionales y políticas públicas. Una agenda pendiente’. Córdoba: Asociación de Universidades del Grupo Montevideo/Universidad Nacional de Córdoba ISBN 978-987-707-021-7.

    Google Scholar 

  • Sala, J. M. (1975). Recursos Hídricos (especial mención de las aguas subterráneas). Relatorio Geología de la Provincia de Buenos Aires, IV Congreso Geológico Argentino (p. 169). Buenos Aires: República Argentina.

    Google Scholar 

  • Secunda, S., Collin, M., & Molloul, A. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management, 54, 39–57.

    Article  Google Scholar 

  • Shrestha, S., Kafle, R., & Prasad Pandey, V. (2017). Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of the Total Environment, 575, 779–790.

    Article  CAS  Google Scholar 

  • Simpson, M., Allen, D. M., & Journeay, M. M. (2014). Assessing risk to groundwater quality using an integrated risk framework. Environment and Earth Science, 71, 4939–4956.

    Article  CAS  Google Scholar 

  • Smith, K. (2001). Environmental hazards. Assessing risks and reducing disasters. Abingdon: Routledge 396 pp.

    Google Scholar 

  • Soltani, A., Hewage, K., Reza, B., & Sadiq, R. (2015). Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: a review. Waste Management, 35, 318–328.

    Article  Google Scholar 

  • Tran H., & Yoshifumi Y. (2009). Integration and application of socio-economic and environmental data within GIS for development study in Thailand. Geospatial World https://www.geospatialworld.net/article/integration-and-application-of-socio-economic-and-environmental-data-within-gis-for-development-study-in-thailand/. Accessed 10 Oct 2018.

  • Varni, M., Weinzettel, P., Usunoff, E., & Rivas, R. (1999). Groundwater recharge in the Azul aquifer, central Buenos Aires Province, Argentina. Physics and Chemistry of the Earth, 24, 343–348.

    Google Scholar 

  • Velasquez, M., & Hester, P. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56.

    Google Scholar 

  • Wang, J., He, J., & Chen, H. (2012). Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432, 216–226.

    Article  CAS  Google Scholar 

  • WHO/UNICEF, 2012. Progress on drinking water and sanitation. Joint Monitoring Programme for Water Supply and Sanitation. http://www.who.int/water_sanitation_health/monitoring/jmp2012/en/. Accessed 10 Nov 2018.

  • Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At risk. Natural hazards, people’s vulnerability and disasters (2nd ed.). Londres: Routledge.

    Google Scholar 

  • WWAP (UNESCO World Water Assessment Programme). (2019). The United NationsWorld Water Development Report 2019: leaving no one behind. Paris: UNESCO.

    Google Scholar 

  • Yin, L., Zhang, E., Wang, X., Wenninger, J., Dong, J., Guo, L., & Huang, J. (2012). A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environment and Earth Science, 1–15.

  • Zeng, Y., & Trauth, K. M. (2005). Internet-based fuzzy multicriteria decision support system for planning integrated solid waste management. Journal of Environmental Informatics, 6, 1–15.

    Article  CAS  Google Scholar 

  • Zhang, H., & Huang, G. H. (2011). Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecological Modelling, 222, 313–321.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are indebted to PhD. Philip Murphy (InfoHarvest, Seattle, WA) for the software Criterium Decision Plus 4.0 Beta version support.

Funding

The study is financially supported by the Agencia Nacional de Promoción Científica y Tecnológica through PICT 2013 0714 and PICT 2013 2019, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through PIP 0350, as well as by the Mar del Plata National University through EXA 792/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lourdes Lima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, M.L., Romanelli, A., Calderon, G. et al. Multi-criteria decision model for assessing groundwater pollution risk in the urban-rural interface of Mar del Plata City (Argentina). Environ Monit Assess 191, 347 (2019). https://doi.org/10.1007/s10661-019-7485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7485-1

Keywords

Navigation