Skip to main content

Advertisement

Log in

Combing both simulated and field-measured data to develop robust hyperspectral indices for tracing canopy transpiration in drought-tolerant plant

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Transpiration plays a key role in water and energy fluxes at various scales. While in recent remote sensing offers a fast and convenient method for tracing transpiration at multiple scales, the approach is mostly indirect and relies on energy balance. Although several hyperspectral indices have been reported to show potentials for tracing transpiration directly, both at leaf and canopy scales, they remain in pioneer stages and need extensive validations. In this study, we used the Soil, Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model calibrated to arid ecosystems in Central Asia, to generate a simulated dataset for validation. Furthermore, new and robust indices have been developed by combining both simulated and in situ measured datasets. Results suggested that the SR(1525, 2150), ND(1425, 2145), and previously reported index of dSR(660,1040) have significant relationships with both simulated and in situ measured transpiration. Further analyses revealed that the ND(1425,2145) shows consistent performance, even with different methodologies of combining simulation and field-measured datasets. Statistically significant results were obtained in this study, even for a dominant drought-tolerant species in arid land, a place that typically has weak vegetation reflectance under strong background radiation. We foresee the approach being conducted in other regions where vegetation reflectance dominates. This may lead to robust hyperspectral indices being developed for directly tracing transpiration at various scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380–394.

    Article  Google Scholar 

  • Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213, 198–212.

    Article  Google Scholar 

  • Chen, D., Huang, J., & Jackson, T. J. (2005). Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, 98(2–3), 225–236.

    Article  Google Scholar 

  • Chen, Y., Xu, C., Chen, Y., Liu, Y., & Li, W. (2013). Progress, challenges and prospects of eco-hydrological studies in the Tarim River basin of Xinjiang, China. [journal article]. Environmental Management, 51(1), 138–153.

    Article  Google Scholar 

  • Cornell, J., & Berger, R. (1987). Factors that influence the value of the coefficient of determination in simple linear and nonlinear regression models. Phytopathology, 77(1), 63–70.

    Article  Google Scholar 

  • Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. [journal article]. Irrigation and Drainage Systems, 19(3), 223–249.

    Article  Google Scholar 

  • Daughtry, C. S. T., Biehl, L. L., & Ranson, K. J. (1989). A new technique to measure the spectral properties of conifer needles. Remote Sensing of Environment, 27(1), 81–91.

    Article  Google Scholar 

  • Dzikiti, S., Verreynne, J. S., Stuckens, J., Strever, A., Verstraeten, W. W., Swennen, R., & Coppin, P. (2010). Determining the water status of Satsuma mandarin trees [Citrus Unshiu Marcovitch] using spectral indices and by combining hyperspectral and physiological data. Agricultural and Forest Meteorology, 150(3), 369–379.

    Article  Google Scholar 

  • Eitel, J. U. H., Gessler, P. E., Smith, A. M. S., & Robberecht, R. (2006). Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. Forest Ecology and Management, 229(1–3), 170–182.

    Article  Google Scholar 

  • El Baki, A. M. A. A. (2013). Estimation of evapotranspiration from airborne hyperspectral scanner data using the SCOPE model. Enschede: University of Twente.

    Google Scholar 

  • El-Hendawy, S., Al-Suhaibani, N., Hassan, W., Tahir, M., & Schmidhalter, U. (2017). Hyperspectral reflectance sensing to assess the growth and photosynthetic properties of wheat cultivars exposed to different irrigation rates in an irrigated arid region. PLoS One, 12(8), e0183262.

    Article  Google Scholar 

  • Feret, J.-B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P. R., Ustin, S. L., le Maire, G., & Jacquemoud, S. (2008). PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112(6), 3030–3043.

    Article  Google Scholar 

  • Féret, J.-B., François, C., Gitelson, A., Asner, G. P., Barry, K. M., Panigada, C., Richardson, A. D., & Jacquemoud, S. (2011). Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sensing of Environment, 115(10), 2742–2750.

    Article  Google Scholar 

  • Glenn, E. P., Nagler, P. L., & Huete, A. R. (2010). Vegetation index methods for estimating evapotranspiration by remote sensing. [journal article]. Surveys in Geophysics, 31(6), 531–555.

    Article  Google Scholar 

  • Gong, C., Wang, J., Hu, C., Wang, J., Ning, P., & Bai, J. (2015). Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits. Journal of Environmental Sciences, 34, 184–196.

    Article  CAS  Google Scholar 

  • Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: Present status and challenges. [journal article]. Irrigation Science, 26(3), 223–237.

    Article  Google Scholar 

  • Granier, A. (1985). A new method of sap flow measurement in tree stems. Annales Des Sciences Forestieres, 42(2), 193–200.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Huang, G., & Li, Y. (2015). Phenological transition dictates the seasonal dynamics of ecosystem carbon exchange in a desert steppe. Journal of Vegetation Science, 26(2), 337–347.

    Article  Google Scholar 

  • Huang, G., & Li, Y. (2017). Photodegradation effects are related to precipitation amount, precipitation frequency and litter traits in a desert ecosystem. Soil Biology and Biochemistry, 115(Supplement C), 383–392.

    Article  CAS  Google Scholar 

  • Huché-Thélier, L., Crespel, L., Gourrierec, J. L., Morel, P., Sakr, S., & Leduc, N. (2016). Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22–38.

    Article  Google Scholar 

  • Imanishi, J., Sugimoto, K., & Morimoto, Y. (2004). Detecting drought status and LAI of two Quercus species canopies using derivative spectra. Computers and Electronics in Agriculture, 43(2), 109–129.

    Article  Google Scholar 

  • Jin, J., & Wang, Q. (2016). Hyperspectral indices based on first derivative spectra closely trace canopy transpiration in a desert plant. Ecological Informatics, 35, 1–8.

    Article  Google Scholar 

  • Jin, J., Wang, Q., Wang, J., & Otieno, D. (2019). Tracing water and energy fluxes and reflectance in an arid ecosystem using the integrated model SCOPE. Journal of Environmental Management, 231, 1082–1090.

    Article  Google Scholar 

  • Katul, G. G., Oren, R., Manzoni, S., Higgins, C., & Parlange, M. B. (2012). Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Reviews of Geophysics, 50(3), RG3002.

    Article  Google Scholar 

  • Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94(1), 13–29.

    Article  Google Scholar 

  • Kuusk, A. (2001). A two-layer canopy reflectance model. Journal of Quantitative Spectroscopy and Radiative Transfer, 71(1), 1–9.

    Article  CAS  Google Scholar 

  • le Maire, G., François, C., & Dufrêne, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28.

    Article  Google Scholar 

  • le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J.-Y., Bréda, N., et al. (2008). Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment, 112(10), 3846–3864.

    Article  Google Scholar 

  • Li, Z., & Li, R. (1981). Anatomical observation of assimilating branches of nine xerophytes in Gansu. Acta Botanica Sinica, 23(3), 181–185.

    Google Scholar 

  • Li, P., & Wang, Q. (2012). Retrieval of chlorophyll for assimilating branches of a typical desert plant through inversed radiative transfer models. International Journal of Remote Sensing, 34(7), 2402–2416.

    Article  Google Scholar 

  • Li, P., & Wang, Q. (2013). Developing and validating novel hyperspectral indices for leaf area index estimation: Effect of canopy vertical heterogeneity. Ecological Indicators, 32, 123–130.

    Article  Google Scholar 

  • Li, S.-G., Asanuma, J., Kotani, A., Davaa, G., & Oyunbaatar, D. (2007). Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. Journal of Hydrology, 333(1), 133–143.

    Article  Google Scholar 

  • Li, L., Luo, G., Chen, X., Li, Y., Xu, G., Xu, H., & Bai, J. (2011). Modelling evapotranspiration in a Central Asian desert ecosystem. Ecological Modelling, 222(20–22), 3680–3691.

    Article  Google Scholar 

  • Marino, G., Pallozzi, E., Cocozza, C., Tognetti, R., Giovannelli, A., Cantini, C., & Centritto, M. (2014). Assessing gas exchange, sap flow and water relations using tree canopy spectral reflectance indices in irrigated and rainfed Olea europaea L. Environmental and Experimental Botany, 99, 43–52.

    Article  Google Scholar 

  • Marshall, M., Thenkabail, P., Biggs, T., & Post, K. (2016). Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and Forest Meteorology, 218–219, 122–134.

    Article  Google Scholar 

  • McDowell, N. G., White, S., & Pockman, W. T. (2008). Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains. Ecohydrology, 1(3), 193–204.

    Article  CAS  Google Scholar 

  • Monteith, J. L. (1965). Evaporation and environment. Paper presented at the Symposia of the society for experimental biology,

  • Naithani, K. J., Ewers, B. E., & Pendall, E. (2012). Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. Journal of Hydrology, 464–465, 176–185.

    Article  Google Scholar 

  • Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3), 263–293.

    Article  Google Scholar 

  • Pavan, G., Jacquemoud, S., De Rosny, G., Rambaut, J., Frangi, J., Bidel, L., et al. (2004). Ramis: A new portable field radiometer to estimate leaf biochemical content. In 7th International Conference on Precision Agriculture and Other Precision Resources Management (pp. 1366–1379).

    Google Scholar 

  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Paper presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

  • Philip, J. R. (1966). Plant water relations: Some physical aspects. Annual Review of Plant Physiology, 17(1), 245–268.

    Article  Google Scholar 

  • Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214–232.

    Article  Google Scholar 

  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81–92.

    Article  Google Scholar 

  • Richter, K., Atzberger, C., Hank, T. B., & Mauser, W. (2012). Derivation of biophysical variables from Earth observation data: Validation and statistical measures. Journal of Applied Remote Sensing, 6(1), 063557.

    Article  Google Scholar 

  • Rodríguez-Pérez, J. R., Riaño, D., Carlisle, E., Ustin, S., & Smart, D. R. (2007). Evaluation of hyperspectral reflectance indexes to detect grapevine water status in vineyards. American Journal of Enology and Viticulture, 58(3), 302–317.

    Google Scholar 

  • Saltelli, A., Tarantola, S., & Chan, K. P. S. (1999). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41(1), 39–56.

    Article  Google Scholar 

  • Schaeffer, S. M., Williams, D. G., & Goodrich, D. C. (2000). Transpiration of cottonwood/willow forest estimated from sap flux. Agricultural and Forest Meteorology, 105(1–3), 257–270.

    Article  Google Scholar 

  • Sonobe, R., & Wang, Q. (2017). Towards a universal hyperspectral index to assess chlorophyll content in deciduous forests. Remote Sensing, 9(3), 191.

    Article  Google Scholar 

  • Su, Z. (2002). The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100.

    Article  Google Scholar 

  • Sun, P., Wahbi, S., Tsonev, T., Haworth, M., Liu, S., & Centritto, M. (2014). On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS One, 9(8), e105165.

    Article  Google Scholar 

  • Thenkabail, P. S. (2015). Remote sensing of water resources, disasters, and urban studies. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Thenkabail, P. S., Lyon, J. G., & Huete, A. (2012). Hyperspectral remote sensing of vegetation. CRC Press.

  • Timmermans, W. J., Kustas, W. P., Anderson, M. C., & French, A. N. (2007). An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote Sensing of Environment, 108(4), 369–384.

    Article  Google Scholar 

  • van der Tol, C. (2015). SCOPE Version 1.61 User Manual.

  • van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences, 6(12), 3109–3129.

    Article  Google Scholar 

  • Verstraeten, W. W., Veroustraete, F., & Feyen, J. (2008). Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors, 8(1), 70–117.

    Article  Google Scholar 

  • Wang, K., & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50(2), RG2005.

    Article  Google Scholar 

  • Wang, Q., & Jin, J. (2015). Leaf transpiration of drought tolerant plant can be captured by hyperspectral reflectance using PLSR analysis. [research articles]. iForest - Biogeosciences and Forestry, 9, 30–37.

    Article  Google Scholar 

  • Wang, Q., & Li, P. (2012a). Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests: Comparison of simulated and measured reflectance data sets. Ecological Indicators, 14(1), 56–65.

    Article  CAS  Google Scholar 

  • Wang, Q., & Li, P. (2012b). Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements. Hydrological Processes, 26(8), 1230–1241.

    Article  Google Scholar 

  • Wang, Q., & Li, P. (2013). Canopy vertical heterogeneity plays a critical role in reflectance simulation. Agricultural and Forest Meteorology, 169, 111–121.

    Article  Google Scholar 

  • Wang, S., Chen, X., Zhou, K., & Wang, Z. (2014). A preliminary study on the transpiration rate based on high spectral index method for Tamarix ramosissima in the southern periphery of the Gurbantunggut Desert. Journal of Desert Research, 34(4), 1023–1030.

    Google Scholar 

  • Yao, W., Han, M., & Xu, S. (2010). Estimating the regional evapotranspiration in Zhalong wetland with the two-source energy balance (TSEB) model and Landsat7/ETM+ images. Ecological Informatics, 5(5), 348–358.

    Article  Google Scholar 

  • Zheng, C., & Wang, Q. (2014). Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia: Haloxylon ammodendron. Ecohydrology, 7(1), 56–63.

    Article  Google Scholar 

  • Zheng, C., & Wang, Q. (2015). Seasonal and annual variation in transpiration of a dominant desert species, Haloxylon ammodendron, in Central Asia up-scaled from sap flow measurement. Ecohydrology, 8(5), 948–960.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the members of the Quantitative Remote Sensing Group for their help on field works.

Funding

This study is financially supported by the NSFC project (Grant No. 41371364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Wang, Q. & Wang, J. Combing both simulated and field-measured data to develop robust hyperspectral indices for tracing canopy transpiration in drought-tolerant plant. Environ Monit Assess 191, 13 (2019). https://doi.org/10.1007/s10661-018-7140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7140-2

Keywords

Navigation