Skip to main content
Log in

Remote estimation of leaf water concentration in winter wheat under different nitrogen treatments and plant growth stages

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Hyperspectral remote sensing can quickly, nondestructively and accurately monitor crop water concentration and provide technical support for winter wheat growth monitoring, drought assessment, and variable irrigation. In this study, canopy spectral reflectance, leaf water concentration (LWC), leaf nitrogen concentration (LNC), leaf area index (LAI), and leaf dry matter (LDM) of four wheat cultivars were measured under different irrigation and nitrogen treatments, and the effects of nitrogen treatment and growth period on spectral reflectance and LWC were analyzed. Canopy spectral reflectance for different growth periods, irrigation, and nitrogen treatments showed significant changes, leading to the phenomena of “nitrogen treatment differentiation” and “growth period differentiation” for the normalized difference spectral index [NDSI (762, 1458, 2301)] and normalized difference infrared index (NDII) monitoring models. To reduce the influence of nitrogen treatment and growth period on the LWC estimation model, a modified normalized difference water index (mNDWI) was constructed by introducing the nitrogen factor (ratio of left and right peak area, RIDA) into the optimized combination of water-sensitive bands [ND (815, 1080), ND (1585, 1740), and ND (2030, 2260)]. Compared with NDSI (762, 1458, 2301), the R2 of mNDWI was improved by 36.2%–41.1% under different nitrogen levels and 18.6%–22.4% in different growth periods; this effectively reduced the impact of nitrogen status on LWC monitoring and realized the unified modeling and accurate inversion of LWC for the entire growth period. The new index mNDWI, especially mNDWI (815, 1080) and mNDWI (2030, 2260), can effectively monitor the LWC status of wheat under different cultivation conditions, which is important for the real-time diagnosis of plant moisture to guide precision field irrigation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Bandyopadhyay, K. K., Pradhan, S., Sahoo, R. N., Singh, R., Gupta, V. K., Joshi, D. K., & Sutradhar, A. K. (2014). Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices. Agricultural Water Management, 146, 115–123. https://doi.org/10.1016/j.agwat.2014.07.017

    Article  Google Scholar 

  • Berger, K., Verrelst, J., Feret, J. B., Wang, Z. H., Wocher, M., Strathmann, M., Danner, M., Mauser, W., & Hank, T. (2020). Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2020.111758

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J. (2001). Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77, 22–33. https://doi.org/10.1016/S0034-4257(01)00191-2

    Article  Google Scholar 

  • Chen, D. Y., Huang, J. F., & Jackson, T. J. (2005). Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, 98, 225–236. https://doi.org/10.1016/j.rse.2005.07.008

    Article  Google Scholar 

  • Cheng, T., Rivard, B., Sánchez-Azofeifa, A. G., Féret, J. B., Jacquemoud, S., & Ustin, S. L. (2012). Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. Journal of Plant Physiology, 169, 1134–1142. https://doi.org/10.1016/j.jplph.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  • Cho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101, 181–193. https://doi.org/10.1016/j.rse.2005.12.011

    Article  Google Scholar 

  • Cooper, P. J. M., Gregory, P. J., Keatinge, J. D. H., & Brown, S. C. (1987). Effects of fertilizer, variety and location on barley production under rainfed conditions in northern Syria 2. Soil water dynamics and crop water use. Field Crops Research, 16, 67–84. https://doi.org/10.1016/0378-4290(87)90054-2

    Article  Google Scholar 

  • Cui, B., Zhao, Q. J., Huang, W. J., Song, X. Y., Ye, H. C., & Zhou, X. F. (2019). A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content. Remote Sensing, 11, 974. https://doi.org/10.3390/rs11080974

    Article  Google Scholar 

  • Danson, F. M., Steven, M. D., Malthus, T. J., & Clark, J. A. (1992). High-spectral resolution data for determining leaf water content. International Journal of Remote Sensing, 13, 461–470. https://doi.org/10.7522/j.issn.1000-694X.2013.00403

    Article  Google Scholar 

  • Das, B., Sahoo, R. N., Pargal, S., Krishna, G., VCerma, R., Viswanathan, C., Sehgal, V. K., & Gupta, V. K. (2017). Comparison of different uni- and multi-variate techniques for monitoring leaf water status as an indicator of water-deficit stress in wheat through spectroscopy. Biosystems Engineering, 160, 69–83. https://doi.org/10.1016/j.biosystemseng.2017.05.007

    Article  Google Scholar 

  • Elsayed, S., Elhoweity, M., Ibrahim, H. H., Dewir, Y. H., Migdadi, H. M., & Schmidhalter, U. (2017). Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agricultural Water Management, 189, 98–110. https://doi.org/10.1016/j.agwat.2017.05.001

    Article  Google Scholar 

  • Feng, W., Guo, B. B., Wang, Z. J., He, L., Song, X., Wang, Y. H., & Guo, T. C. (2014). Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crops Research, 159, 43–52. https://doi.org/10.1016/j.fcr.2014.01.010

    Article  Google Scholar 

  • Feng, W., Zhang, H. Y., Zhang, Y. S., Qi, S. L., Heng, Y. R., Guo, B. B., Ma, D. Y., & Guo, T. C. (2016). Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Research, 198, 238–246. https://doi.org/10.1016/j.fcr.2016.08.023

    Article  Google Scholar 

  • Fitzgerald, G. J., Rodriguez, D., Christensen, L. K., Belford, K., Sadras, V. O., & Clarke, T. R. (2006). Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 7, 233–248. https://doi.org/10.1007/s11119-006-9011-z

    Article  Google Scholar 

  • Fourty, T. H., Baret, F., Jacquemoud, S., Schmuck, G., & Verdebout, J. (1996). Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sensing of Environment, 56, 104–117.

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266. https://doi.org/10.1117/12.210877

    Article  Google Scholar 

  • Gitelson, A. A., Gamon, J. A., & Solovchenko, A. (2017). Multiple drivers of seasonal change in PRI: Implications for photosynthesis 2. Stand Level. Remote Sensing of Environment, 190, 198–206. https://doi.org/10.1016/j.rse.2016.12.015

    Article  Google Scholar 

  • Gizaw, S. A., Campbell, K. G., & Carter, A. H. (2016). Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions. Field Crops Research, 196, 168–179. https://doi.org/10.1016/j.fcr.2016.06.018

    Article  Google Scholar 

  • Gong, P., Pu, R. L., & Heald, R. C. (2002). Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. International Journal of Remote Sensing, 23, 1827–1850. https://doi.org/10.1080/01431160110075622

    Article  Google Scholar 

  • Guo, J., Gao, Y., Li, S., Pema, R., Wang, Y., Zhang, Y., & Liu, R. (2019). Estimation model of leaf water content of winter wheat based on multi-angle hyperspectral remote sensing. Journal of Anhui Agricultural University, 46, 124–132. https://doi.org/10.3389/fpls.2021.614417

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426. https://doi.org/10.1016/S0034-4257(02)00018-4

    Article  Google Scholar 

  • Hendawy, S. E. E., Suhaibani, N. A. A., Elsayed, S., Hassan, W. M., Dewir, Y. H., Refay, Y., & Abdella, K. A. (2019). Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agricultural Water Management, 217, 356–373. https://doi.org/10.1016/j.agwat.2019.03.006

    Article  Google Scholar 

  • Huang, W. J., Wang, J. H., Liu, L. Y., Wang, J. D., Tan, C. W., Li, C. J., et al. (2005). Remote sensing identification of plant structural types based on multi-temporal and bidirectional canopy spectrum. Transactions of the Chinese Society of Agricultural Engineering, 21, 82–86. (in Chinese with English abstract). https://doi.org/10.1016/0090-4295(80)90421-5.

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Klem, K., Zahora, J., Zemek, F., Trunda, P., Tuma, I., Novotna, K., Hodaňová, P., Rapantová, B., Hanuš, J., Vavříková, J., & Holub, P. (2018). Interactive effects of water deficit and nitrogen nutrition on winter wheat, remote sensing methods for their detection. Agricultural Water Management, 210, 171–184. https://doi.org/10.1016/j.agwat.2018.08.004

    Article  Google Scholar 

  • Kong, W. P., Huang, W. J., Ma, L. L., Tang, L. L., Li, C. R., Zhou, X. F., & Casa, R. (2021). Estimating vertical distribution of leaf water content within wheat canopies after head emergence. Remote Sensing, 13, 4125. https://doi.org/10.3390/rs13204125

    Article  Google Scholar 

  • Krishna, G., Sahoo, R. N., Singh, P., Bajpai, V., Patra, H., Kumar, S., Dandapani, R., Gupta, V. K., Viswanathan, C., Ahmad, T., & Sahoo, P. M. (2019). Comparison of various modeling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agricultural Water Management, 213, 231–244. https://doi.org/10.1016/j.agwat.2018.08.029

    Article  Google Scholar 

  • Lillesaeter, O. (1982). Spectral reflectance of partly transmitting leaves: Laboratory measurements and mathematical modeling. Remote Sensing of Environment, 12, 247–254.

    Article  Google Scholar 

  • Liu, L. Y., Wang, J. H., Huang, W. J., Zhao, C. J., Zhang, B., & Tong, Q. X. (2004). Estimating winter wheat plant water content using red edge parameters. International Journal of Remote Sensing, 17, 3331–3342. https://doi.org/10.1080/01431160310001654365

    Article  Google Scholar 

  • Matos, D. A., Whitney, L. P., Harrington, M. J., & Hazen, S. P. (2013). Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode. PLoS ONE. https://doi.org/10.1371/journal.pone.0080640

    Article  PubMed  PubMed Central  Google Scholar 

  • Orueta, A. P., Khanna, S., Litago, J., Whiting, M. L., & Ustin, S. (2005). Assessment of NDVI and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands. The 1st International Conference of Remote Sensing and Geoinformation Processing, Trier, Germany: Universitat Trier publishers.

  • Peng, Y., & Gitelson, A. A. (2011). Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agricultural and Forest Meteorology, 151, 1267–1276. https://doi.org/10.1016/j.agrformet.2011.05.005

    Article  Google Scholar 

  • Peñuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14, 1887–1905. https://doi.org/10.1080/01431169308954010

    Article  Google Scholar 

  • Peñuelas, J., & Inoue, Y. (1999). Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica, 36, 355–360. https://doi.org/10.1023/A:1007033503276

    Article  Google Scholar 

  • Peñuelas, J., Piñol, J., Ogaya, R., & Filella, I. (1997). Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18, 2869–2875. https://doi.org/10.1080/014311697217396

    Article  Google Scholar 

  • Pu, R. L., & Gong, P. (2000). Hyperspectral remote sensing and its applications. Higher Education Press.

    Google Scholar 

  • Quintero, J. M., Fournier, J. M., & Benlloch, M. (1999). Water transport in sunflower root systems: Effects of ABA, Ca2+ status and HgCl2. Journal of Experimental Botany, 50, 1607–1612. https://doi.org/10.1093/jxb/50.339.1607

    Article  CAS  Google Scholar 

  • Strachan, I. B., Pattey, E., & Boisvert, J. B. (2002). Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sensing of Environment, 80, 213–224. https://doi.org/10.1016/S0034-4257(01)00299-1

    Article  Google Scholar 

  • Thomas, J. R., Namken, L. N., Oerther, G. F., & Brown, R. G. (1971). Estimating leaf water content by reflectance measurements. Agronomy Journal, 63, 845–847.

    Article  Google Scholar 

  • Tucker, C. J. (1980). Remote sensing of leaf water content in the near-infrared. Remote Sensing of Environment, 10, 23–32.

    Article  Google Scholar 

  • Wang, C., Liu, W., Li, Q., Ma, D. Y., Lu, H., Feng, W., Zhu, Y., & Guo, T. (2014). Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Research, 165, 138–149. https://doi.org/10.1016/j.fcr.2014.04.011

    Article  Google Scholar 

  • Wang, H. L., Chen, A. F., Wang, Q. F., & He, B. (2015). Drought dynamics and impacts on vegetation in China from 1982 to 2011. Ecological Engineering, 75, 303–307. https://doi.org/10.1016/j.ecoleng.2014.11.063

    Article  Google Scholar 

  • Wang, L. L., & Qu, J. (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34, L20405. https://doi.org/10.1029/2007GL031021

    Article  Google Scholar 

  • Wang, Y., Li, G., Zhang, L., & Fan, J. (2011). Retrieval of leaf water content of winter wheat from canopy spectral reflectance data using a position index (λmin) derived from the 1200 nm absorption band. Remote Sensing Letters, 2, 31–40. https://doi.org/10.1080/01431161.2010.490797

    Article  Google Scholar 

  • Wocher, M., Berger, K., Danner, M., Mauser, W., & Hank, T. (2018). Physically-Based retrieval of canopy equivalent water thickness using hyperspectral data. Remote Sensing, 10, 1924. https://doi.org/10.3390/rs10121924

    Article  Google Scholar 

  • Yao, X., Jia, W. Q., Si, H., Guo, Z., Tian, Y., Liu, X., Cao, W., & Zhu, Y. (2014). Exploring novel bands and key index for evaluating leaf equivalent water thickness in wheat using hyperspectra influenced by nitrogen. PLoS ONE. https://doi.org/10.1371/journal.pone.0096352

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi, Q. X., Bao, A. M., Wang, Q., & Zhao, J. (2013). Estimation of leaf water content in cotton by means of hyperspectral indices. Computers and Electronics in Agriculture, 90, 144–151. https://doi.org/10.1016/j.compag.2012.09.011

    Article  Google Scholar 

  • Yilmaz, M. T., Hunt, E. R., Jr., & Jackson, T. J. (2008). Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sensing of Environment, 112, 2514–2522. https://doi.org/10.1016/j.rse.2007.11.014

    Article  Google Scholar 

  • Yu, G. R., Miwa, T., Nakayama, K., Matsuoka, N., & Kon, H. A. (2000). A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties. Plant and Soil, 227, 47–58.

    Article  CAS  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience Remote Sensing, 39, 1491–1507.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85, 109–124. https://doi.org/10.1016/S0034-4257(02)00197-9

    Article  Google Scholar 

  • Zhang, H. Y., Ren, X. X., Zhou, Y., Wu, Y. P., He, L., Heng, Y. R., Feng, W., & Wang, C. Y. (2018). Remotely assessing photosynthetic nitrogen use efficiency with in situ hyperspectral remote sensing in winter wheat. European Journal of Agronomy, 101, 90–100. https://doi.org/10.1016/j.eja.2018.08.010

    Article  CAS  Google Scholar 

  • Zhang, J. H., & Zhang, J. B. (2008). Response of winter wheat spectral reflectance to leaf chlorophyll, total nitrogen of above ground. Chinese Journal of Soil Science, 39, 586–592. https://doi.org/10.1163/156939308783122788

    Article  CAS  Google Scholar 

  • Zhao, J., Huang, W. J., Zhang, Y. H., & Jing, Y. S. (2013a). Inversion of leaf area index during different growth stages in winter wheat. Spectroscopy and Spectral Analysis, 33, 2546–2552.

    CAS  PubMed  Google Scholar 

  • Zhao, K., Valle, D., Popescu, S., Zhang, X., & Mallick, B. (2013b). Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sensing of Environment, 132, 102–119. https://doi.org/10.1016/j.rse.2012.12.026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Key Technologies Research and Development Program of Henan Province, China (Grant No. 212102110041), the National Natural Science Foundation of China (Grant No. 32271991); and the Research Start-up Fund to Young Talents of Henan Agricultural University (Grant No. 30601648).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LH and WF; Methodology: LH; Formal analysis and investigation: M-RL, S-HZ, and H-WG; Writing-original draft preparation: LH; Writing-review and editing: WF and C-YW; Funding acquisition: T-CG.

Corresponding authors

Correspondence to Wei Feng or Tian-Cai Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Liu, MR., Zhang, SH. et al. Remote estimation of leaf water concentration in winter wheat under different nitrogen treatments and plant growth stages. Precision Agric 24, 986–1013 (2023). https://doi.org/10.1007/s11119-022-09983-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09983-3

Keywords

Navigation