Skip to main content
Log in

Determination of toxic metals in leather by wavelength dispersive X-ray fluorescence (WDXRF) and inductively coupled plasma optical emission spectrometry (ICP OES) with emphasis on chromium

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The tanning industry is one of the largest environmental polluters due to high generation waste in all production processes, but the tanning is particularly worrisome due to the use of significant amounts of chromium. Cr is an element potentially toxic to both health and the environment, depending on the concentration and the oxidation state. Cr(VI) can come in contact with human skin when using leather goods, which can cause allergies and dermatitis, besides being carcinogenic. Considering that approximately 90% of the world production of leather is performed with Cr salts, the determination of this element in leather is necessary to avoid exposure to the risks that the element can provide. The main goal of this study was the development of an alternative analytical method for the determination of Cr in leathers (ovine and bovine leather tanned with Cr and vegetable tannin) using wavelength dispersive X-ray fluorescence (WDXRF) for direct solid analysis. Besides performing analysis of the chemical composition and determination of Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Ni, Pb, Sb, Sr, Ti, and Zn in leather by inductively coupled plasma optical emission spectrometry (ICP OES). Principal component analysis (PCA) was also used in the evaluation of the WDXRF and ICP OES data sets. WDXRF calibration models for Cr presented satisfactory figures of merit and the analysis of the leathers revealed an alarming concentration of total Cr in the samples reaching 21,353 mg kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aslan, A. (2009). Determination of heavy metal toxicity of finished leather solid waste. Bulletin of Environmental Contamination and Toxicology, 82(5), 633–638. https://doi.org/10.1007/s00128-009-9656-1.

    Article  CAS  Google Scholar 

  • Aslan, A., & Üzüm, N. O. (2015). Determining the heavy metal contents of natural and artificial upholstery leathers. Tekstil ve Konfeksiyon, 25(3), 33–37.

    Google Scholar 

  • Augusto, A. S., Barsanelli, P. L., Pereira, F. M. V., & Pereira-filho, E. R. (2017). Calibration strategies for the direct determination of Ca, K, and Mg in commercial samples of powdered milk and solid dietary supplements using laser-induced breakdown spectroscopy (LIBS). Food Research International, 94, 72–78. https://doi.org/10.1016/j.foodres.2017.01.027.

    Article  CAS  Google Scholar 

  • Bañón, E., Marcilla, A., García, A. N., Martínez, P., & León, M. (2016). Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Management, 48, 285–299. https://doi.org/10.1016/j.wasman.2015.10.012.

    Article  CAS  Google Scholar 

  • Basegio, T., Beck Leão, A. P., Bernardes, A. M., & Bergmann, C. P. (2009). Vitrification: an alternative to minimize environmental impact caused by leather industry wastes. Journal of Hazardous Materials, 165(1–3), 604–611. https://doi.org/10.1016/j.jhazmat.2008.10.045.

    Article  CAS  Google Scholar 

  • Bilge, G., Sezer, B., Eseller, K. E., Berberoglu, H., Koksel, H., & Boyaci, I. H. (2016). Determination of Ca addition to the wheat flour by using laser-induced breakdown spectroscopy (LIBS). European Food Research and Technology, 242, 1685–1692. https://doi.org/10.1007/s00217-016-2668-2.

    Article  CAS  Google Scholar 

  • Budrugeac, P., Cucos, A., & Miu, L. (2011). The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. Journal of Thermal Analysis and Calorimetry, 104, 439–450. https://doi.org/10.1007/s10973-010-1183-0.

    Article  CAS  Google Scholar 

  • Bundesinstitut fur Risikobewertung (2007). Chromium(VI) in leather clothing and shoes problematic for allergy sufferers! http://www.bfr.bund.de/cd/9575. Accessed 10 Dec 2017.

  • Chaplin, T. D., Clark, R. J. H., & Martinón-torres, M. (2010). A combined Raman microscopy, XRF and SEM-EDX study of three valuable objects—a large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London. Journal of Molecular Structure, 976, 350–359. https://doi.org/10.1016/j.molstruc.2010.03.042.

    Article  CAS  Google Scholar 

  • Costa, V. C., Castro, J. P., Andrade, D. F., Babos, D. V., Garcia, J. A., Sperança, M. A., Catelani, T. A., & Pereira-Filho, E. R. (2018). Laser-induced breakdown spectroscopy (LIBS) applications in the chemical analysis of waste electrical and electronic equipment (WEEE). Trends in Analytical Chemistry, 108, 65–73.

    Article  CAS  Google Scholar 

  • Dettmer, A., Nunes, K. G. P., Gutterres, M., & Marcílio, N. R. (2010). Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather. Journal of Hazardous Materials, 176(1–3), 710–714. https://doi.org/10.1016/j.jhazmat.2009.11.090.

    Article  CAS  Google Scholar 

  • Dixit, S., Yadav, A., Dwivedi, P. D., & Das, M. (2015). Toxic hazards of leather industry and technologies to combat threat: a review. Journal of Cleaner Production, 87, 39–49. https://doi.org/10.1016/j.jclepro.2014.10.017.

    Article  CAS  Google Scholar 

  • Fuck, W. F., Gutterres, M., Marcíli, N. R., & Bordingnon, S. (2011). The influence of chromium supplied by tanning and wet finishing processes on the formation of Cr(VI) in leather. Brazilian Journal of Chemical Engineering, 28(2), 221–228.

    Article  CAS  Google Scholar 

  • George, N., Chauhan, P. S., Kumar, V., Puri, N., & Gupta, N. (2014). Approach to ecofriendly leather: characterization and application of an alkaline protease for chemical free dehairing of skins and hides at pilot scale. Journal of Cleaner Production, 79, 249–257. https://doi.org/10.1016/j.jclepro.2014.05.046.

    Article  CAS  Google Scholar 

  • Gitet, H., Subramanian, P. A., Minilu, D., Kiros, T., Hilawie, M., Gebremariam, G., & Taye, K. (2013). Speciation of chromium in soils near Sheba Leather Industry, Wukro Ethiopia. Talanta, 116, 626–629. https://doi.org/10.1016/j.talanta.2013.07.039.

    Article  CAS  Google Scholar 

  • Gómez-morón, M. A., Ortiz, P., Martín-ramírez, J. M., Ortiz, R., & Castaing, J. (2016). A new insight into the vaults of the kings in the Alhambra (Granada, Spain) by combination of portable XRD and XRF. Microchemical Journal, 125, 260–265. https://doi.org/10.1016/j.microc.2015.11.023.

    Article  CAS  Google Scholar 

  • Gondal, M. A., Hussain, T., Yamani, Z. H., & Baig, M. A. (2009). On-line monitoring of remediation process of chromium polluted soil using LIBS. Journal of Hazardous Materials, 163(2–3), 1265–1271. https://doi.org/10.1016/j.jhazmat.2008.07.127.

    Article  CAS  Google Scholar 

  • Guerra, M. B. B., De Almeida, E., Carvalho, G. G. A., Souza, P. F., Nunes, L. C., Júnior, D. S., & Krug, F. J. (2014). Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials. Journal of Analytical Atomic Spectrometry, 29, 1667–1674. https://doi.org/10.1039/C4JA00083H.

    Article  Google Scholar 

  • Hedberg, Y. S., Lidén, C., & Odnevall Wallinder, I. (2014). Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI). Journal of Hazardous Materials, 280, 654–661. https://doi.org/10.1016/j.jhazmat.2014.08.061.

    Article  CAS  Google Scholar 

  • ISO 17072-2. (2014). Couro—determinação química do teor de metais Parte 2: Teor total do metal. International Organization for Standardization 6 p.

  • ISO 17075. (2007). Leather—chemical tests—determination of chromium(VI) content. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO 5398-4. (2007). Leather—chemical determination of chromic oxide content part 4: quantification by inductively coupled plasma optical emission spectrometer (ICP OES) (p. 6). Geneva: International Organization for Standardization.

    Google Scholar 

  • IUPAC (2017). International Union of Pure and Applied Chemistry. http://iupac.org/publications/analytical_compendium. Accessed 1 Aug 2017.

  • Jerschow, E., Hostýnek, J. J., & Maibach, H. I. (2001). Allergic contact dermatitis elicitation thresholds of potent allergens in humans. Food and Chemical Toxicology, 39(11), 1095–1108. https://doi.org/10.1016/S0278-6915(01)00059-X.

    Article  CAS  Google Scholar 

  • Kanagaraj, J., Senthilvelan, T., Panda, R. C., & Kavitha, S. (2015). Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review. Journal of Cleaner Production, 89, 1–17. https://doi.org/10.1016/j.jclepro.2014.11.013.

    Article  CAS  Google Scholar 

  • Karavana, H. A., Başaran, B., Aslan, A., Bitlisli, B. O., & Gülümser, G. (2011). Heavy metal contents of bootee leathers tanned with different process recipes. Tekstil ve Konfeksiyon, 3(4), 305–310.

    Google Scholar 

  • Krummenauer, K., & de Oliveira Andrade, J. J. (2009). Incorporation of chromium-tanned leather residue to asphalt micro-surface layer. Construction and Building Materials, 23(1), 574–581. https://doi.org/10.1016/j.conbuildmat.2007.10.024.

    Article  Google Scholar 

  • Kumar, R., Alamelu, D., Acharya, R., & Rai, A. K. (2014). Determination of concentrations of chromium and other elements in soil and plant samples from leather tanning area by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 300(1), 213–218. https://doi.org/10.1007/s10967-014-3006-4.

    Article  CAS  Google Scholar 

  • Luo, W., Si, Y., Wang, H., Qin, Y., Huang, F., & Wang, C. (2011). Leather material found on a 6th B. C. Chinese bronze sword: a technical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1630–1633. https://doi.org/10.1016/j.saa.2011.05.023.

    Article  CAS  Google Scholar 

  • Mannina, L., & Lombardo, A. (2013). Diagnostic analyses for the study of materials, technique and state of preservation of a gilt and painted leather of the XVIII century. Procedia Chemistry, 8, 202–211. https://doi.org/10.1016/j.proche.2013.03.026.

    Article  CAS  Google Scholar 

  • Marguí, E., Tapias, J. C., Casas, A., Hidalgo, M., & Queralt, I. (2010). Analysis of inlet and outlet industrial wastewater effluents by means of benchtop total reflection X-ray fluorescence spectrometry. Chemosphere, 80(3), 263–270. https://doi.org/10.1016/j.chemosphere.2010.04.027.

    Article  CAS  Google Scholar 

  • Mignini, F., Streccioni, V., Baldo, M., Vitali, M., Indraccolo, U., Bernacchia, G., & Cocchioni, M. (2004). Individual susceptibility to hexavalent chromium of workers of shoe, hide, and leather industries. Immunological pattern of HLA-B8,DR3-positive subjects. Preventive Medicine, 39(4), 767–775. https://doi.org/10.1016/j.ypmed.2004.02.048.

    Article  CAS  Google Scholar 

  • Miksche, L. W., & Lewalter, J. (1997). Health surveillance and biological effect monitoring for chromium-exposed workers. Regulatory Toxicology and Pharmacology, 26(1 Pt 2), S94–S99. https://doi.org/10.1006/rtph.1997.1146.

    Article  CAS  Google Scholar 

  • Nakano, K., Nishi, C., Otsuki, K., Nishiwaki, Y., & Tsuji, K. (2011). Depth elemental imaging of forensic samples by confocal micro-XRF method. Analytical Chemistry, 83, 3477–3483.

    Article  CAS  Google Scholar 

  • Nasr, M. M., Gondal, M. A., & Seddigi, Z. S. (2011). Detection of hazardous pollutants in chrome-tanned leather using locally developed laser-induced breakdown spectrometer. Environmental Monitoring and Assessment, 175(1–4), 387–395. https://doi.org/10.1007/s10661-010-1538-9.

    Article  CAS  Google Scholar 

  • Neiva, A. M., & Pereira-Filho, E. R. (2018). Evaluation of the chemical composition of synthetic leather using spectroscopy techniques. Applied Spectroscopy, 72(6), 921–932. https://doi.org/10.1177/0003702818764922.

    Article  CAS  Google Scholar 

  • Neiva, A. M., Jacinto, M. A., Alencar, M. M., Esteves, S. N., & Pereira-Filho, E. R. (2016). Proposition of classification models for the direct evaluation of the quality of cattle and sheep leathers using laser-induced breakdown spectroscopy (LIBS) analysis. RSC Advances, 6(106), 104827–104838. https://doi.org/10.1039/c6ra22337k.

    Article  CAS  Google Scholar 

  • Okoh, S., Adeyemo, D. J., Onoja, R. A., & Arabi, S. A. (2013). Determination of some trace elements in leather. International Journal of Applied Science and Technology, 3(1), 101–105.

    Google Scholar 

  • Oliveira, L. F., Canevari, N. T., Guerra, M. B. B., Pereira, F. M. V., Schaefer, C. E. G. R., & Pereira-Filho, E. R. (2013). Proposition of a simple method for chromium(VI) determination in soils from remote places applying digital images: a case study from Brazilian Antarctic station. Microchemical Journal, 109, 165–169. https://doi.org/10.1016/j.microc.2012.03.007.

    Article  CAS  Google Scholar 

  • Sano, T., & Suzuki, S. (2009). Basic forensic identification of artificial leather for hit-and-run cases. Forensic Science International, 192(1–3), e27–e32. https://doi.org/10.1016/j.forsciint.2009.08.018.

    Article  CAS  Google Scholar 

  • Scheffler, G. L., & Pozebon, D. (2015). Trace element determination in leather samples using on-line internal standardization, ultrasonic nebulization and axial view-ICP OES. Analytical Methods, 7(12), 5180–5185. https://doi.org/10.1039/c5ay01011j.

    Article  CAS  Google Scholar 

  • Sebestyén, Z., Czégény, Z., Badea, E., Carsote, C., Sendrea, C., Barta-Rajnai, E., et al. (2015). Thermal characterization of new, artificially aged and historical leather and parchment. Journal of Analytical and Applied Pyrolysis, 115, 419–427. https://doi.org/10.1016/j.jaap.2015.08.022.

    Article  CAS  Google Scholar 

  • Silveste, D. M., Leme, F. D. O., Nomura, C. S., & Nascimento, A. N. (2016). Direct analysis of barium, calcium, potassium, and manganese concentrations in tobacco by laser-induced breakdown spectroscopy. Microchemical Journal, 126, 545–550. https://doi.org/10.1016/j.microc.2016.01.015.

    Article  CAS  Google Scholar 

  • Thanikaivelan, P., Rao, J. R., Nair, B. U., & Ramasami, T. (2004). Progress and recent trends in biotechnological methods for leather processing. Trends in Biotechnology, 22(4), 181–188. https://doi.org/10.1016/j.tibtech.2004.02.008.

    Article  CAS  Google Scholar 

  • Thyssen, J. P., & Menné, T. (2010). Metal allergy—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chemical Research in Toxicology, 23(2), 309–318. https://doi.org/10.1021/tx9002726.

    Article  CAS  Google Scholar 

  • Van Beik, J., Sena Kosera, V., de Andrade Maranhão, T., & Chaves, E. S. (2017). Alkaline solubilization and ultrasound assisted extraction for Cr and Pb determination in leather by atomic absorption spectrometry. Analytical Methods, 9(22), 3284–3289. https://doi.org/10.1039/C7AY00246G.

    Article  Google Scholar 

  • Venezia, M., Alonzo, G., & Palmisano, L. (2008). EDTA excess Zn(II) back-titration in the presence of 4-(2-pyridylazo)-resorcinol indicator and naphthol green β as inert dye for determining Cr(III) as Cr(III)/EDTA complex: application of the method to a leather industry wastewater. Journal of Hazardous Materials, 151(2–3), 356–363. https://doi.org/10.1016/j.jhazmat.2007.05.081.

    Article  CAS  Google Scholar 

  • Vornicu, N., Deselnicu, V., Bibire, C., Ivanov, D., & Doroftei, F. (2015). Analytical techniques used for the characterization and authentification of six ancient religious manuscripts (XVIII–XIX centuries). Microscopy Research and Technique, 78, 70–84. https://doi.org/10.1002/jemt.22447.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, Z., Ross, A., Huang, Z., Chang, W., Ou-yang, K., Chen, Y., & Wu, C. (2015). Determination of heavy metals in leather and fur by microwave plasma-atomic emission spectrometry. Spectrochimica Acta Part B, 112(1), 6–9. https://doi.org/10.1016/j.sab.2015.06.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Analitica and Thermo Scientific for loan of ICP OES and WDXRF instruments.

Funding

This study was supported by the São Paulo Research Foundation [FAPESP, process 2016/01513-0, 2015/14488-0, and 2011/51564-6], Empresa Brasileira de Pesquisa Agropecuária [Embrapa, 02.03.1.16.00.08], and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq, 506119/2008-4, 401074/2014-5, 160152/2015-1 and 305637/2015-0].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edenir Rodrigues Pereira-Filho.

Electronic supplementary material

ESM 1

(DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neiva, A.M., Sperança, M.A., Costa, V.C. et al. Determination of toxic metals in leather by wavelength dispersive X-ray fluorescence (WDXRF) and inductively coupled plasma optical emission spectrometry (ICP OES) with emphasis on chromium. Environ Monit Assess 190, 618 (2018). https://doi.org/10.1007/s10661-018-6990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6990-y

Keywords

Navigation