Skip to main content
Log in

Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeida, J. A., Diniz, Y. S., Marques, S. F. G., Faine, L. A., Ribas, B. O., Burneiko, R. C., & Novelli, E. L. B. (2002). The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environment International, 27(8), 673–679.

    Article  CAS  Google Scholar 

  • Bai, J. H., Yang, Z. F., Cui, B. S., Gao, H. F., & Ding, Q. Y. (2010). Some heavy metals distribution in wetland soils under different land use types along a typical plateau lake, China. Soil and Tillage Research, 106, 344–348.

    Article  Google Scholar 

  • Bai, J. H., Xiao, R., Zhang, K. J., & Gao, H. F. (2012). Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. Journal of Hydrology, 450-451, 244–253.

    Article  CAS  Google Scholar 

  • Bai, J., Xiao, R., Zhao, Q., Lu, Q., Wang, J., & Reddy, R. (2014). Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime. PLoS One, 9(9), e107738.

    Article  Google Scholar 

  • Bai, J. H., Jia, J., Zhang, G., Zhao, Q., Lu, Q., & Cui, B. (2016). Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta. Environmental Pollution, 219, 379–388.

    Article  CAS  Google Scholar 

  • Birke, M., & Rauch, U. (2000). Urban geochemistry: investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22(3), 233–248.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. EcolIndic, 5, 151–169.

    CAS  Google Scholar 

  • Çevik, F., Göksu, M. Z. L., Derici, O. B., & Fındık, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1–4), 309–317.

    Article  Google Scholar 

  • Chapman, P. (1990). The sediment quality triad approach to determining pollution-induced degradation. Science of the Total Environment, 97(98), 815–825.

    Article  Google Scholar 

  • Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicological and Environmental Safety, 69, 513–524.

    Article  CAS  Google Scholar 

  • De Miguel, E., Iribarren, I., Chacon, E., Ordonez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66(3), 505–513.

    Article  Google Scholar 

  • Gallego, J. L., Ordóñez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27(7), 589–596.

    Article  CAS  Google Scholar 

  • Gambrell, R. P. (1994). Trace and toxic metals in wetlands—a review. Journal of Environmental Quality, 23(5), 883–891.

    Article  CAS  Google Scholar 

  • Gisey, J. P., & Hoke, R. A. (1990). Freshwater sediment quality criteria: toxicity bioassessment. In R. Baudo, J. P. Gisey, & M. Muntao (Eds.), Sediment chemistry and toxicity of in-place pollutants (p. 391). Ann Arbor: Lewis publishers.

    Google Scholar 

  • Hȧkanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hendershot, W. H., Lalande, L., and M. Duquette, M. (1993). Soil reaction and method of exchangeable acidity. In M. R. Catter, (Ed), Sampling and method of analysis. Canadian Society of Soil Science, Lewis publisher London. (pp. 141 – 145).

  • Jervis, R. E., Ko, M. M. M. C., Junliang, T., Puling, L. (1993). Multivariant analyses of trace element patterns for environmental tracking. Journal of Radioanalytical and Nuclear Chemistry, 169(2), 363–379.

  • Jones, I., Kille, p., & Sweeney, G. (2001). Cadmium delays growth hormone expression during rainbow trout development. Journey of fish Biology, 59, 1015–1022.

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Rastegari Mehr, M., Mokhtarzadeh, Z., Moore, F., Lahijanzadeh, A., Rostami, S., & Kaabi, H. (2015). Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province, Iran. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-015-5080-8.

  • Kumar, A. V., Patil, R. S., & Nambi, K. S. V. (2001). Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmospheric Environment, 35(25), 4245–4251.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • Larsen, B., & Jensen, A. (1989). Evaluation of the sensitivity of sediment monitoring stationary in pollution monitoring. Marine Pollution Bulletin, 20, 556–560.

    Article  CAS  Google Scholar 

  • Lin, Y. P., Teng, T. P., & Chang, T. K. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning, 62(1), 19–35.

    Article  Google Scholar 

  • Liu, B., Hu, K., Jiang, Z., Yang, J., Luo, X., & Liu, A. (2011). Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 62(2), 265–275.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165.

    Article  CAS  Google Scholar 

  • Marshall, S., Pettigrove, V., Carew, M., & Hoffmann, A. (2010). Isolating the impact of sediment toxicity in urban streams. Environmental Pollution, 158(5), 1716–1725.

    Article  CAS  Google Scholar 

  • Mc Cleod, S. (1975). Studies on wet oxidation procedures for the determination of organic carbon in soil. In CSIRO Division of Soils (Ed.), Notes on soil techniques. Australia: CSIRO Division of Soils.

    Google Scholar 

  • McGeer, J. C., Szebedinszky, C., McDonald, D. G., & Wood, C. M. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 50(3), 231–243.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55(3), 431–442.

    Article  CAS  Google Scholar 

  • Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2003). Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution, 121, 169–180.

    Article  CAS  Google Scholar 

  • Nkono, N. A., Asubiojo, O. L., Ogunsua, O. A., & Oluwole, A. F. (1999). Levels, sources and speciation of trace elements in the surface waters of the Lagos Lagoon. International Journal of Environmental Studies, 56(2), 215–230.

    Article  CAS  Google Scholar 

  • Nyangababo, J. T., Henry, L., & Omutange, E. (2005). Heavy metal contamination in plants, sediments, and air precipitation of katonga, simiyu, and nyando wetlands of Lake Victoria basin, East Africa. Bulletin of Environmental Contamination and Toxicology, 75(1), 189–196.

    Article  CAS  Google Scholar 

  • Pekey, H. (2006). The distribution and source of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208.

  • Pekey, H., Karakas, D., Ayberk, S., Tolun, L., & Bakoglu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marin Pollution Bulletin, 48, 946–953.

    Article  CAS  Google Scholar 

  • Perin, G., Bonardi, M., Fabris, R., Simoncini, B., Manente, S., Tosi, L., & Scotto, S. (1997). Heavy metal pollution in central Venice Lagoon bottom sediments: evaluation of the metal bioavailability by geochemical speciation procedure. Environmental Technology, 18(6), 593–604.

    Article  CAS  Google Scholar 

  • Pruell, R. J., Rubinstein, N. I., Taplin, B. K., Li Volsi, J. A., & Bowen, R. D. (1993). Accumulation of polychlorinated organic contaminants from sediment by three benthic marine species. Archives of Environmental Contamination and Toxicology, 24(3), 290–297.

    Article  CAS  Google Scholar 

  • Rastegari Mehr, M. (2012). Environmental geochemistry of heavy metalsin water and sediments of a stretch of Zayanderood River (within 50 km of Isfahan city center). Unpublished M.Sc. thesis. Shiraz University (in Farsi).

  • Santos Bermejo, J. C., Beltrán, R., & Ariza, J. G. (2003). Spatial variations of heavy metals contamination in sediments from Odiel River (Southwest Spain). Environment International, 29(1), 69–77.

    Article  CAS  Google Scholar 

  • Sheykhi, V., & Moore, F. (2013). Evaluation of potentially toxic metals pollution in the sediments of the Kor River, southwest Iran. Environmental Monitoring and Assessment, 185, 3219–3232.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water, Air, and Soil Pollution, 141(1–4), 35–54.

    Article  CAS  Google Scholar 

  • Tack, F. M. G., Verloo, M. G., Vanmechelen, L., & Van Ranst, E. (1997). Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Science of the Total Environment, 201(2), 113–123.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländ Marine Research, 33(1–4), 566–575.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth crust. Geological Society of American Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.

    Article  CAS  Google Scholar 

  • Vosoogh, A., Saeedi, M., & Lak, R. (2016). Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea. Environmental Monitoring and Assessment, 188, 603.

    Article  Google Scholar 

  • Xiao, R., Zhang, M., Yao, X., Ma, Z., Yu, F., & Bai, J. (2016). Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta. Journal of Soils and Sediments., 16(3), 821–830.

    Article  CAS  Google Scholar 

  • Xu, Y. J., Liu, X. Z., & Ma, A. J. (2004). Current research on toxicity effect and molecular mechanism of heavy metals on fish. Marine Science, 28(10), 67–70.

    CAS  Google Scholar 

  • Yalcin, M. G., Tumuklu, A., Sonmez, M., & Erdag, D. S. (2010). Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana), Turkey. Environmental Monitoring and Assessment, 164(1–4), 311–322.

    Article  CAS  Google Scholar 

  • Yilgor, S., Kucuksezgin, F., & Ozel, E. (2012). Assessment of metal concentrations in sediments from Lake Bafa (Western Anatolia): an index analysis approach. Bulletin of Environmental Contamination and Toxicology, 89(3), 512–518.

    Article  CAS  Google Scholar 

  • Yuan, G. L., Liu, C., Chen, L., & Yang, Z. (2011). Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. Journal of Hazardous Materials, 185(1), 336–345.

    Article  CAS  Google Scholar 

  • Zhang, G., Bai, J., Xio, R., Zhao, Q., Jia, J., Cui, B., & Iiu, X. (2017a). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 184, 278–288.

    Article  CAS  Google Scholar 

  • Zhang, G., Bai, J., Zhao, Q., Jia, J., & Wen, X. (2017b). Heavy metals pollution in soil profiles from seasonal-flooding riparian wetlands in a Chinese delta: Levels, distributions and toxic risks. Physics and Chemistry of the Earth, Parts A/B/C, 97, 54–61.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the office of vice-chancellor for Research and Technology, Shahid Chamran University of Ahvaz for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rastmanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastmanesh, F., Safaie, S., Zarasvandi, A.R. et al. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran. Environ Monit Assess 190, 273 (2018). https://doi.org/10.1007/s10661-018-6650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6650-2

Keywords

Navigation