Skip to main content
Log in

Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Freshwater resources are increasingly scarce due to human activities, and the understanding of water quality variations at different spatial and temporal scales is necessary for adequate management. Here, we analyze the hypotheses that (1) the presence of a wastewater treatment plant (WWTP) and (2) a polluted tributary that drains downstream from the WWTP change the spatial patterns of physicochemical variables (pH, turbidity, dissolved oxygen, and electrical conductivity) and nutrient concentrations (reactive soluble phosphorus, total phosphorus, nitrogen series, total nitrogen, and total dissolved carbon) along a mid-order river in SE Brazil and that these effects depend on rainfall regime. Six study sites were sampled along almost 4 years to evaluate the impacts of human activities, including sites upstream (1–3) and downstream (5–6) from the WWTP. The impacts were observed presenting an increasing trend from the source (site 1) towards Água Quente stream (site 4, the polluted tributary), with signs of attenuation at site 5 (downstream from both WWTP and site 4) and the river mouth (site 6). Input of nutrients by rural and urban runoff was observed mainly at sites 2 and 3, respectively. At sites 4 and 5, the inputs of both untreated and treated wastewaters increased nutrient concentrations and changed physicochemical variables, with significant impacts to Monjolinho River. Seasonal variations in the measured values were also observed, in agreement with the pluviometric indexes of the region. Univariate analyses suggested no effect of the WWTP for most variables, with continued impacts at sites downstream, but non-parametric multivariate analysis indicated that these sites were recovering to chemical characteristics similar to upstream sites, apparently due to autodepuration. Therefore, multivariate methods that allow rigorous tests of multifactor hypotheses can greatly contribute to determine effects of both point and non-point sources in river systems, thus contributing to freshwater monitoring and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberto, W. D., del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & de los Ángeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a River Basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894. https://doi.org/10.1016/S0043-1354(00)00592-3.

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology—Structure and function of running waters. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-5583-6.

    Google Scholar 

  • Andersen, J. (1976). An ignition method for determination of total phosphorus in lake sediments. Water Research, 10(4), 329–331. https://doi.org/10.1016/0043-1354(76)90175-5.

    Article  CAS  Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46.

    Google Scholar 

  • Anderson, M. J., & Walsh, D. C. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs, 83(4), 557–574. https://doi.org/10.1890/12-2010.1.

    Article  Google Scholar 

  • Anderson, M., Gorley, R. N., & Clarke, R. K. (2008). Permanova+ for Primer: Guide to software and statistical methods. Plymouth: Primer-E.

    Google Scholar 

  • Baird, R. B. (2017). Standard methods for the examination of waters and wastewaters. São Paulo: LCM – Pharmabooks.

    Google Scholar 

  • Aristi, I., Von Schiller, D., Arroita, M., Barceló, D., Ponsati, L., García-Galán, M. J., Sabater, S., Elosegi, A., & Acuña, V. (2015). Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: subsidy or stress? Freshwater Biology, 60(7), 1398–1410. https://doi.org/10.1111/fwb.12576.

    Article  CAS  Google Scholar 

  • Baio, J.A.F. (2009). Avaliação da contaminação nos principais corpos d’água do município de São Carlos/SP. PhD Thesis, Universidade de São Paulo.

  • Bere, T., & Tundisi, J. G. (2011a). Influence of land-use patterns on benthic diatom communities and water quality in the tropical Monjolinho hydrological basin, São Carlos-SP, Brazil. Water SA, 37(1), 93–102.

    Article  CAS  Google Scholar 

  • Bere, T., & Tundisi, J. G. (2011b). Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil. Hydrobiologia, 661(1), 261–276. https://doi.org/10.1007/s10750-010-0532-0.

    Article  CAS  Google Scholar 

  • Carey, R. O., & Migliaccio, K. W. (2009). Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environmental Management, 44(2), 205–217. https://doi.org/10.1007/s00267-009-9309-5.

    Article  Google Scholar 

  • CETESB - São Paulo State Environmental Agency (2012). Qualidade das Águas Superficiais no Estado de São Paulo. http://www.cetesb.sp.gov.br/userfiles/file/agua/aguas-superficiais/relatorio-aguassuperficiais-2012-substituido-em-060513.zip. Accessed 08 July 2015.

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E 192pp.

    Google Scholar 

  • Criscuolo, C., Vasconcelos, C. H., & Silva, J. dos. S. V. da (2000) Uso e ocupação da terra em 1965 e 1998. In E. L. G. Espíndola, J. S. V. Silva, C. E. Marinelli, M. M. Abdon (Orgs.), A Bacia Hidrográfica do Rio do Monjolinho (pp. 104–113). São Carlos: Rima Editora.

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., et al. (2008). Eutrophication of US freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43(1), 12–19.

    Article  Google Scholar 

  • Dornfeld CB (2006). Utilização de Chironomus sp. (Diptera, Chironomidae) para a avaliação da qualidade de sedimentos e contaminação por metais. PhD Thesis, EESC/USP.

  • Drury, B., Rosi-Marshall, E., & Kelly, J. J. (2013). Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology, 79(6), 1897–1905. https://doi.org/10.1128/AEM.03527-12.

    Article  CAS  Google Scholar 

  • EPA - Environmental Protection Agency (1996). Method 3050B - Acid digestion of sediments, sludges, and soils. Available at: http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/3050b.pdf. Accessed in 05 Aug 2015.

  • Espíndola, E. L. G. (2000) O rio do Monjolinho: um estudo de caso. In E. L. G. Espíndola, J. S. V. Silva, C. E. Marinelli, M. M. Abdon (Orgs.), A Bacia Hidrográfica do Rio do Monjolinho (pp. 36-40). São Carlos: Rima Editora.

  • Figueroa-Nieves, D., McDowell, W. H., Potter, J. D., Martínez, G., & Ortiz-Zayas, J. R. (2014). Effects of sewage effluents on water quality in tropical streams. Journal of Environmental Quality, 43(6), 2053–2063. https://doi.org/10.2134/jeq2014.03.0139.

    Article  CAS  Google Scholar 

  • Freire, R., Bonifácio, C. M., Freitas, F. H., Schneider, R. M., & Tavares, C. R. G. (2013). Nitrogen forms and total phosphorus in water courses: a study at Maringá stream, Paraná State. Acta Scientiarum Technology, 35(4), 711–716.

    Article  Google Scholar 

  • Gall, H. E., Park, J., Harman, C. J., Jawitz, J. W., & Rao, P. S. C. (2013). Landscape filtering of hydrologic and biogeochemical responses in managed catchments. Landscape Ecology, 28(4), 651–664. https://doi.org/10.1007/s10980-012-9829-x.

    Article  Google Scholar 

  • Geist, J. (2011). Integrative freshwater ecology and biodiversity conservation. Ecological Indicators, 11(6), 1507–1516. https://doi.org/10.1016/j.ecolind.2011.04.002.

    Article  Google Scholar 

  • Gücker, B., Brauns, M., & Pusch, M. T. (2006). Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. Journal of the North American Benthological Society, 25(2), 313–329. https://doi.org/10.1899/0887-3593(2006)25[313:EOWTPD]2.0.CO;2.

    Article  Google Scholar 

  • Hoffman, C. C., Kjaergaard, C., Uusi-Kamppa, J., Hansen, H. C. B., & Kronvang, B. (2009). Phosphorus retention in riparian buffers: review of their efficiency. Journal of Environmental Quality, 38(5), 142–1955.

    Article  Google Scholar 

  • IBGE - Brazilian Institute of Geography and Statistics (2014) Cities - São Carlos. http://cod.ibge.gov.br/2V6E3. Accessed 08 July 2015.

  • Jardim, F. A., von Sperling, E., Jardim, B. F. M., & Almeida, K. C. B. (2014). Determinants of cyanobacteria’s bloom in water at Doce River, Mnas Gerais, Brazil. Engenharia Sanitária Ambiental, 19(3), 207–208. https://doi.org/10.1590/S1413-41522014019000001026.

    Article  Google Scholar 

  • Jensen, H. S., Kristensen, P., Jeppensen, E., & Skytthe, A. (1992). Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 235(1), 731–743.

    Article  Google Scholar 

  • Kim, T. G., Kim, K. E., Cho, G. S., & Kim, H. G. (1996). Monitoring of lake water quality using Landsat TM imagery data. Journal of the Korean Society for Geospatial Information System, 4(2), 23–33.

    Google Scholar 

  • Koklu, R., Sengorur, B., & Topal, B. (2010). Water quality assessment using multivariate statistical methods—a case study: Melen River system (Turkey). Water Resource Management, 24(5), 959–978. https://doi.org/10.1007/s11269-009-9481-7.

    Article  Google Scholar 

  • Lee, T. A., Rollwagen-Bollens, G., & Bollens, S. M. (2015). The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake. Environmental Monitoring and Assessment, 187(6), 315. https://doi.org/10.1007/s10661-015-4550-2.

    Article  Google Scholar 

  • Li, R. H., Liu, S. M., Zhang, G. L., Ren, J. L., & Zhang, J. (2012). Biogeochemistry of nutrients in an estuary affected by human activities: the Wanquan River estuary, eastern Hainan Island, China. Continental Shelf Research, 57, 18–31.

    Article  Google Scholar 

  • Lim, J., & Choi, M. (2015). Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environmental Monitoring and Assessment, 187(6), 384. https://doi.org/10.1007/s10661-015-4616-1.

    Article  Google Scholar 

  • Lobo, E. A., Schuch, M., Heinrich, C. G., Costa, A. B., Düpont, A., Wetzel, C. E., & Ector, L. (2015). Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environmental Monitoring and Assessment, 187(6), 354. https://doi.org/10.1007/s10661-015-4586-3.

    Article  Google Scholar 

  • Marti, E., Aumatell, J., Godé, L., Poch, M., & Sabater, F. (2004). Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. Journal of Environmental Quality, 33(1), 285–293. https://doi.org/10.2134/jeq2004.2850.

    Article  CAS  Google Scholar 

  • McCullough, G. K., Page, S. J., Hesslein, R. H., Stainton, M. P., Kling, H. J., Salki, A. G., & Barber, D. G. (2012). Hydrological forcing of a recent trophic surge in Lake Winnipeg. Journal of Great Lakes Research, 38(3), 95–105. https://doi.org/10.1016/j.jglr.2011.12.012.

    Article  CAS  Google Scholar 

  • Naidoo, S., & Olaniran, A. O. (2014). Treated wastewater effluent as a source of microbial pollution of surface water resources. International Journal of Environmental Research and Public Health, 11(1), 249–270. https://doi.org/10.3390/ijerph110100249.

    Article  Google Scholar 

  • Novelli, A. (2005). Estudo limnológico e ecotoxicológico da água e sedimento do Rio Monjolinho-São Carlos (SP), com ênfase nas substâncias de referência cádmio e cobre. MSc Dissertation, EESC/USP.

  • Paerl, H. W. (2009). Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32(4), 593–601. https://doi.org/10.1007/s12237-009-9158-8.

    Article  CAS  Google Scholar 

  • Peres, A.C. (2002). Uso de macroalgas e variáveis físicas, químicas e biológicas para avaliação da qualidade da água do Rio Monjolinho, São Carlos, Estado de São Paulo. PhD Thesis – Programa de Pós-Graduação em Ecologia e Recursos Naturais\UFSCar.

  • Prepas, E.E., Charette, T. (2003). Worldwide eutrophication of water bodies: causes, concerns, controls. IN: Treatise on Geochemistry. Holland, H. D. & Turekian, K. K. Elsevier, 311–331.

  • Ross, C., Petzold, H., Penner, A., & Ali, G. (2015). Comparison of sampling strategies for monitoring water quality in mesoscale Canadian Prairie watersheds. Environmental Monitoring and Assessment, 187(7), 395. https://doi.org/10.1007/s10661-015-4637-9.

    Article  Google Scholar 

  • SAAE - Autonomous Service of Water and Wastewater of São Carlos. (2015). Relatório de Qualidade do Esgoto Tratado. São Carlos: SAAE São Carlos.

    Google Scholar 

  • Shrestha, R. R., Dibike, Y. B., & Prowse, T. D. (2012). Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. Journal of Great Lakes Research, 38(3), 83–94. https://doi.org/10.1016/j.jglr.2011.02.004.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Suleiman, S., Scrano, L., Bufo, S. A., & Karaman, R. (2012). Seasonal and spatial variation in the monitoring parameters of Zomar stream, Palestine during 2010. Journal of Environmental Science and Engineering B, 1(2), 499–509.

    Google Scholar 

  • Ternus, R. Z., Souza-Franco, G. M., Anselmini, M. E. K., Mocellin, D. J. C., & Magro, J. D. (2011). Influence of urbanization on water quality in the basin of the upper Uruguay River in western Santa Catarina, Brazil. Acta Limnologica Brasiliensia, 23(2), 189–199. https://doi.org/10.1590/S2179-975X2011000200009.

    Article  Google Scholar 

  • Townsend-Small, A., McClelland, J. W., Holmes, R. M., & Peterson, B. J. (2011). Seasonal and hydrologic drivers of dissolved organic matter and nutrients in the upper Kuparuk River, Alaskan Arctic. Biogeochemistry, 103(1–3), 109–124. https://doi.org/10.1007/s10533-010-9451-4.

    Article  CAS  Google Scholar 

  • Varekar, V., Karmakar, S., Jha, R., & Ghosh, N. C. (2015). Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environmental Monitoring and Assessment, 187(6), 376. https://doi.org/10.1007/s10661-015-4583-6.

    Article  Google Scholar 

  • Viana, S.M. (2005). Riqueza e distribuição de macrófitas aquáticas no rio monjolinho e tributários (São Carlos, SP) e análise de sua relação com as variáveis físicas e químicas. MSc Dissertation, EESC/USP.

  • Wang, S., Xiangcan, J., Qingyun, B., Haiqing, L., & Fengchang, W. (2010). Evaluation of phosphorus bioavailability in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River region, China. Environtal Earth Science, 60(7), 1491–1498. https://doi.org/10.1007/s12665-009-0284-1.

    Article  CAS  Google Scholar 

  • Weeraprapan, P., Phalaraksh, C., Chantara, S., & Kawashima, M. (2015). Water quality monitoring and cadmium contamination in the sediments of Mae Tao Stream, Mae Sot District, Tak Province, Thailand. International Journal of Environmental Science and Development, 6(2), 142–146. https://doi.org/10.7763/IJESD.2015.V6.577.

    Article  Google Scholar 

  • Zhou, F., Liu, Y., Guo, H. (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, Hong Kong. Environmental Monitoring and Assessment, 132(1-3), 1–13.

Download references

Acknowledgements

The authors thank the Coordination for Improvement of Higher Education Personnel (CAPES, research grant no 3039/2010), the National Council of Scientific and Technological Development (CNPq, grant no. 134191/2013-7 and 403580/2013-7), and to the ANP-Petrobras (grant no. 0050.0043 180.08.4, agreement 4600295977) for the financial support for this project. This financial support has been provided to the last two authors. This work was the main subject of a MSc dissertation of the first author. We also thank Dr. L. E. Moschini for the map of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Aparecido Mozeto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrenha, P.I.I., Tanaka, M.O., Hanai, F.Y. et al. Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river. Environ Monit Assess 190, 43 (2018). https://doi.org/10.1007/s10661-017-6386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6386-4

Keywords

Navigation