Skip to main content

Advertisement

Log in

Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akin, B. S., & Kırmızıgu, O. (2017). Heavy metal contamination in surface sediments of Gokcekaya Dam Lake, Eskis¸ehir, Turkey. Environment and Earth Science, 76, 402.

    Article  Google Scholar 

  • Alharbi, T., Alfaifi, H., & El-Sorogy, A. (2017). Metal pollution in Al-Khobar seawater, Arabian Gulf, Saudi Arabia. Marine Pollution Bulletin, 119, 407–415.

    Article  CAS  Google Scholar 

  • Alharbi, T., & El-Sorogy, A. (2017). Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia. Journal of the African Earth Sciences, 129, 458–468.

    Article  CAS  Google Scholar 

  • Almasoud, F. I., Usman, A. I., & Al-Farraj, A. S. (2015). Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis. Arabian Journal of Geosciences, 8(3), 1691–1703.

    Article  CAS  Google Scholar 

  • Al-Taani, A. A., Batayneh, A., Nazzal, Y., Ghrefat, H., Elawadi, E., & Zaman, H. (2014). Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia. Marine Pollution Bulletin, 86, 582–590.

    Article  CAS  Google Scholar 

  • Carman, C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.

    Article  Google Scholar 

  • Cravo, A., Foster, P., & Bebianno, M. J. (2002). Minor and trace elements in the shell of Patella aspera (Roding, 1798). Environment International, 28, 295–302.

    Article  CAS  Google Scholar 

  • de Mora, S., Sheikholeslami, M. R., Wyse, E., Azemard, S., & Cassi, R. (2004a). An assessment of metal contamination in coastal sediments of the Caspian Sea. Marine Pollution Bulletin, 48, 61–77.

    Article  Google Scholar 

  • de Mora, S., Fowler, S. W., Wyse, E., & Azemard, S. (2004b). Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin, 49, 410–424.

    Article  Google Scholar 

  • Diaz-de Alba, M., Galindo-Riano, M. D., Casanueva-Marenco, M. J., Garcia-Vargas, M., & Kosore, C. M. (2011). Assessment of the metal pollution, potential toxicity and speciation of sediment from Algeciras Bay (South of Spain) using chemometric tools. Journal of Hazardous Materials, 190, 177–187.

    Article  CAS  Google Scholar 

  • El-Sorogy, A. S., Abdelwahab, M., & Nour, H. (2012). Heavy metals contamination of the Quaternary coral reefs, Red Sea coast, Egypt. Environment and Earth Science, 67, 777–785.

    Article  CAS  Google Scholar 

  • El-Sorogy, A. S., El Kammar, A., Ziko, A., Aly, M., & Nour, H. (2013a). Gastropod shells as pollution indicators, Red Sea coast, Egypt. Journal of African Earth Sciences, 87, 93–99.

    Article  CAS  Google Scholar 

  • El-Sorogy, A. S., Nour, H., Essa, E., & Tawfik, M. (2013b). Quaternary coral reefs of the Red Sea coast, Egypt: diagenetic sequence, isotopes and trace metals contamination. Arabian Journal of Geosciences, 6, 4981–4991.

    Article  Google Scholar 

  • EL-Sorogy, A. S., Tawfik, M., Almadani, S. A., & Attiah, A. (2016). Assessment of toxic metals in coastal sediments of the Rosetta area, Mediterranean Sea, Egypt. Environmental Earth Sciences, 75, 398.

    Article  Google Scholar 

  • Fang, T. H., Li, J. Y., Feng, H. M., & Chen, H. Y. (2009). Distribution and contamination of trace metals in surface sediments of the East China Sea. Marine Environmental Research, 68, 178–187.

    Article  CAS  Google Scholar 

  • Folk, R. L. (1974). Petrology of sedimentary rocks (p. 184). Austin: Hemphill.

    Google Scholar 

  • Foster, L. C., Allison, N., Finch, A. A., & Andersson, C. (2009). Strontium distribution in the shell of the aragonite bivalve Arctica islandica. Geochemistry, Geophysics, Geosystems, 10, 1–14. https://doi.org/10.1029/2007GC001915.

    Article  Google Scholar 

  • Hökanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • ISQG. (1995). Interim sediment quality guidelines. Ottawa: Environment Canada 9 pp.

    Google Scholar 

  • Leopold, E. N., Jung, M. C., Auguste, O., Ngatcha, N., Georges, E., & Lape, M. (2008). Metals pollution in freshly deposited sediments from river Mingoa, main tributary to the municipal lake of Yaounde, Cameroon. Geosciences Journal, 12(4), 337–347.

    Article  CAS  Google Scholar 

  • Lin, C., He, M., Liu, S., & Li, Y. (2012). Contents, enrichment, toxicity and baselines of trace elements in the estuarine and coastal sediments of the Daliao River System, China. Geochemical Journal, 46, 371–380.

    Article  CAS  Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environment Management, 19, 18–97.

    Article  Google Scholar 

  • Muller, G. (1979). Heavy metals in the sediment of the Rhine-Changes Seity, 1971. Umschau Wissenschaften Technology, 79, 778–783.

    Google Scholar 

  • Nour, H., & El-Sorogy, A. S. (2017). Distribution and enrichment of heavy metals in Sabratha coastal sediments, Mediterranean Sea, Libya. Journal of African Earth Sciences, 134, 222–229.

    Article  CAS  Google Scholar 

  • Omar, M. B., Mendiguchia, C., Er-Raioui, H., Marhraoui, M., Lafraoui, G., Oulad-bdellah, M. k., Garcia-Vargas, M., & Moreno, C. (2015). Distribution of heavy metals in marine sediments of Tetouan coast (north of Morocco): natural and anthropogenic sources. Environmental Earth Sciences, 74, 4171–4185.

    Article  Google Scholar 

  • Randolph, R. C., Hardy, J. T., Fowler, S. W., Price, A. R. G., & Pearson, W. H. (1998). Toxicity and persistence of nearshore sediment contamination following the 1991 Gulf War. Environment International, 24, 33–42.

    Article  CAS  Google Scholar 

  • Ruiz, F. (2001). Trace metals in estuarine sediments from the southwestern Spanish coast. Marine Pollution Bulletin, 42, 482–490.

  • Rumisha, C., Elskens, M., Leermakers, M., & Kochzius, M. (2012). Trace metal pollution and its influence on the community structure of soft bottom molluscs in intertidal areas of the Dar es Salaam coast, Tanzania. Marine Pollution Bulletin, 64, 521–531.

    Article  CAS  Google Scholar 

  • Sadiq, M., & Alam, I. (1989). Metal concentrations in pearl oyster, Pinctada radiata, collected from Saudi Arabian coast of the Arabian Gulf. Bulletin of Environmental Contamination and Toxicology, 42, 111–118.

    Article  Google Scholar 

  • Sinex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Checapeake Bay sediments. Environmental Geology, 3, 315–323.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. The Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • Vallius, H., Ryabchuk, D., & Kotilainen, A. (2007). Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. In: Vallius, H. (ed.) Holocene sedimentary environment and sediment geochemistry of the eastern gulf of Finland, Baltic Sea, Geological Survey of Finland, Special Paper, 45 33–48.

  • Uddin, S. (2014). Environmental impacts of desalination activities in the Arabian gulf. International Journal of Environmental Science and Development, 5(2), 114–117.

    Article  Google Scholar 

  • Youssef, M., & El-Sorogy, A. S. (2016). Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar lagoon, Rabigh, Red Sea, Saudi Arabia. Arabian Journal of Geosciences, 9, 474.

    Article  Google Scholar 

  • Youssef, M., El-Sorogy, A. S., Al-Kahtany, K., & Al-Otaibi, N. (2015). Environmental assessment of coastal surface sediments Tarut Island, Arabian Gulf (Saudi Arabia). Marine Pollution Bulletin, 96, 424–433.

    Article  CAS  Google Scholar 

  • Zamani-Ahmadmahmoodi, R., Jafari, A., & Alibeygi-beni, H. (2017). Potential ecological risk assessment, enrichment, geoaccumulation, and source identification of metals in the surface sediments of Choghakhor wetland, Iran. Environmental Earth Sciences, 76, 398.

    Article  Google Scholar 

  • Zhao, J., Temimi, M., Al-Azhar, M., & Ghedira, H. (2015). Satellite-based tracking of oil pollution in the Arabian Gulf and the Sea of Oman. Canadian Journal of Remote Sensing, 41(2), 113–125.

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Research Project No. NFG-15-03-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbaset El-Sorogy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, T., Alfaifi, H., Almadani, S.A. et al. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia. Environ Monit Assess 189, 634 (2017). https://doi.org/10.1007/s10661-017-6352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6352-1

Keywords

Navigation