Skip to main content

Advertisement

Log in

Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, three different sensors of satellites including the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), and Total Ozone Mapping Spectrometer (TOMS) were used to study spatial and temporal variations of aerosols over ten populated cities in Iran. Also, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for analyzing the origins of air masses and their trajectory in the area. An increasing trend in aerosol concentration was observed in the most studied cities in Iran during 1979–2016. The cities in the western part of Iran had the highest annual mean of aerosol concentration. The highest aerosol optical depth (AOD) value (0.76 ± 0.51) was recorded in May 2012 over Ahvaz, and the lowest value (0.035 ± 0.27) was recorded in December 2013 over Tabriz. After Ahvaz, the highest AOD value was found over Tehran (annual mean 0.11 ± 0.20). The results show that AOD increases with increasing industrial activities, but the increased frequency of aerosols due to land degradation and desertification is more powerful in Iran. The trajectory analysis by the HYSPLIT model showed that the air masses come from Egypt, Syria, and Lebanon and passed over the Iraq and then reached to Iran during summer. Aerosol radiative forcing (ARF) has been analyzed for Zanjan (Aerosol Robotic Network site) during 2010–2013. The ARF at surface and top of the atmosphere was found to be ranging from − 79 to − 10W m−2 (average − 33.45 W m−2) and from − 25 to 6 W m−2 (average − 12.80 W m−2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AOD:

Aerosol optical depth

ARF:

Aerosol radiative forcing

HYSPLIT:

Hybrid Single-Particle Lagrangian Integrated Trajectory

MISR:

Multi-angle Imaging SpectroRadiometer

MODIS:

Moderate Resolution Imaging Spectroradiometer

TOMS:

Total Ozone Mapping Spectrometer

References

  • Alam, K., Qureshi, S., & Blaschke, T. (2011). Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmospheric Environment, 45, 4641–4651.

    Article  CAS  Google Scholar 

  • Alam, K., Trautmann, T., & Blaschke, T. (2012). Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmospheric Environment, 50, 234–245.

    Article  CAS  Google Scholar 

  • Alpert, P., P. Kischa, A. Shtivelman, S. O. Krichak, and J. H. Joseph (2004). Vertical distribution of Saharan dust based on 2.5-year model predictions. Atmospheric Research, 70, 109–130.

  • Bayat, A., Khalesifard, H. R., & Masoumi, A. (2013). Retrieval of aerosol single-scattering albedo and polarized phase function from polarized sun-photometer measurements for Zanjan’s atmosphere. Atmospheric Measurement Techniques, 6, 2659–2669.

    Article  Google Scholar 

  • Cattrall, C., Reagan, J., Thome, K., & Dubovik, O. (2005). Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. Journal of Geophysical Research, 110, D10S11. https://doi.org/10.1029/2004JD005124.

    Article  Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. H., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science, 255, 423–430.

    Article  CAS  Google Scholar 

  • Choobari, O. A., Ghafarian, P., & Owlad, E. (2015). Temporal variations in the frequency and concentration of dust events over Iran based on surface observations. International Journal of Climatology. https://doi.org/10.1002/joc.4479.

  • De Miranda., RM., Lopes., F., Do Rosano., NE., Yamasoe., MA., Landulfo., E., De Fatima Andrate., M. (2016). The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil. Environ Monit Assess 189(1), 6.

  • Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B., & Verstraete, M. M. (1998). Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36, 1072–1108.

    Article  Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via the NOAA ARL READY website, NOAA Air Resour. Lab., Silver Spring, MD. Available at http://www.arl.noaa.gov/ready/hysplit4.html.

  • Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for the retrieval of aerosol optical properties from sun and sky radiance measurements. Journal of Geophysical Research, 105, 20,673–20,696. https://doi.org/10.1029/2000JD900282.

    Article  Google Scholar 

  • Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanre, D., & Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3), 590–608.

    Article  Google Scholar 

  • Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research, 104, 31,333–31,349.

    Article  Google Scholar 

  • Eck, T. F., et al. (2005). Columnar aerosol optical properties at AERONET sites in Central Eastern Asia and aerosol transport to the tropical mid-Pacific. Journal of Geophysical Research, 110, D06202. https://doi.org/10.1029/2004JD005274.

    Article  Google Scholar 

  • Gerivani, H., Lashkaripour, G. R., Ghafoor, I. M., & Jalili, N. (2010). The source of dust storm in Iran: a case study based on geological information and rainfall data. Carpathian Journal of Earth and Environmental Sciences, 6, 297–308.

    Google Scholar 

  • Gharibzadeh, M., Alam, K., Bidokhti, A. A., Abedini, Y., & Masoumi, A. (2016). Radiative effects and optical properties of aerosol during two dust events in 2013 over Zanjan, Iran. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr.2016.04.0161.

  • Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system, ISBN: 978-3-540-32354-9 (print) 978-3-540-32355-6 (online).

  • Hamidi, M., Kavianpour, M. R., & Shao, Y. (2013). Synoptic analysis of dust storms in the Middle East. Asia Pacific Journal of the Atmospheric Sciences, 49, 279–286. https://doi.org/10.1007/s13143-013-0027-9.

    Article  Google Scholar 

  • Hansen, J., Sato, M., & Ruedy, R. (1997). Radiative forcing and climate response. Journal of Geophysical Research, 102(D6), 6831–6864. https://doi.org/10.1029/96JD03436.

    Article  CAS  Google Scholar 

  • Hatzianastassiou, N., Matsoukas, C., Drakakis, E., Stackhouse, Jr. P. W., Koepke, P., Fotiadi, A., Pavlakis, K. G., & Vardavas, I. (2007). The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS). Atmospheric Chemistry and Physics, 7.

  • Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E. F., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16.

    Article  Google Scholar 

  • Holben, B. N., et al. (2001). An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. Journal of Geophysical Research, 106, 12,067–12,097.

    Article  Google Scholar 

  • Kahn, R., Li, W. H., Martonchik, J., Bruegge, C., Diner, D., Gaitley, B., Abdou, W., Dubovik, O., Holben, B., Smirnov, S., Jin, Z., & Clark, D. (2005). MISR low-light-level calibration and implications for aerosol retrieval over dark water. Journal of the Atmospheric Sciences, 62, 1032–1062.

    Article  Google Scholar 

  • Kaufman, Y. J., Tanre, D., Dubovik, O., Karnieli, A., & Remer, L. A. (2001). Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophysical Research Letters, 28, 1479–1482.

    Article  Google Scholar 

  • Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in climate system. Nature, 419, 215–223.

    Article  CAS  Google Scholar 

  • Khoshsima, M., Ahmadi-Givi, F., Bidokhti, A. A., & Sabetghadam, S. (2014). Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub-urban area. Journal of Aerosol Science, 68, 46–57.

    Article  CAS  Google Scholar 

  • Kim, H. S., Chung, Y. S., & Lee, S. G. (2013). Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009. Environmental Monitoring Assessment, 185, 369. https://doi.org/10.1007/s10661-012-2559-3.

    Article  CAS  Google Scholar 

  • Kosmopoulos, P. G., Kaskaoutis, D. G., Nastos, P. T., & Kambezidis, H. D. (2008). Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data. Remote Sensing of Environment, 112, 2354–2366.

    Article  Google Scholar 

  • Lohmann, U., & Feichter, J. (2005). Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics, 5, 715–737.

    Article  CAS  Google Scholar 

  • Masoumi, A., Khalesifard, H. R., Bayat, A., & Moradhaseli, R. (2013). Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in northwest Iran. Atmospheric Research, 120–121, 343–355.

    Article  Google Scholar 

  • Papadimas, C. D., Hatzianastassiou, N., Mihaloppoulos, N., Kanakidou, M., Katsoulis, B. D., & Vardavas, I. (2008). Assessment of the MODIS collections C005 and C004 aerosol optical depth products over the Mediterranean Basin. Atmospheric Chemistry and Physics, 9, 2987–2999.

    Article  Google Scholar 

  • Prasad, A. K., Singh, S., Chauhan, S. S., Srivastava, M. K., Singh, R. P., & Singh, R. (2007). Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmospheric Environment, 41, 6289–6301.

    Article  CAS  Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosol, climate, and hydrological cycle. Science, 294, 2119e2124.

    Article  Google Scholar 

  • Ramaswamy, V., & Chen, C.-T. (1997). Climate forcing-response relationships for greenhouse and shortwave radiative perturbations. Geophysical Research Letters, 24, 667–670.

    Article  CAS  Google Scholar 

  • Ranjan, R. R., Joshi, H. P., & Iyer, K. N. (2007). Spectral variation of total column aerosol optical depth over Rajkot: a tropical semi-arid Indian station. Aerosol and Air Quality Research, 7, 3345.

    Article  Google Scholar 

  • Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., de Rautenbach, C. J. W., Flamant, C., et al. (2013). Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Natural Hazards. https://doi.org/10.1007/s11069-013-0927-0.

  • Tripathi, S. N., Dey, S., Chandel, A., Srivastava, S., Singh, R. P., & Holben, B. N. (2005). Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Annales Geophysicae, 23, 1093–1101.

    Article  Google Scholar 

  • Xiao, N., Shi, T., Calder, C. A., Munroe, D. K., Berrett, C., Wolfinbarger, S., & Li, D. (2009). Spatial characteristics of the difference between MISR and MODIS aerosol optical depth retrievals over mainland Southeast Asia. Remote Sensing of Environment, 113, 1–9.

    Article  Google Scholar 

  • Zoljoodi, M., Didevarasl, A., & Ranjbar Saadatabadi, A. (2013). Dust events in the western parts of Iran and the relationship with drought expansion over the dust-source areas in Iraq and Syria. Atmospheric and Climate Sciences. https://doi.org/10.4236/acs.2013.33034.

Download references

Acknowledgements

We are grateful to Douglas Klotter for his assistance in the graphics preparation and data retrieval. The analyses and visualizations used in this study were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Arkian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkian, F., Nicholson, S.E. Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data. Environ Monit Assess 190, 1 (2018). https://doi.org/10.1007/s10661-017-6336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6336-1

Keywords

Navigation