Skip to main content
Log in

Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002–1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658–1.469), contamination factors (1.02–2.7), and geo-accumulation index (0.043–0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within “low ecological risk” category (20.04–24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant–sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Achyuthan, H., Richard, M. D., Srinivasalu, S., & Selvaraj, K. (2002). Trace metals concentrations in the sediment cores of estuary and tidal zones between Chennai and Pondicherry, along the east coast of India. Indian J Mar Sci, 31, 141–149.

    CAS  Google Scholar 

  • Agoramoorthy, G., & ChenFA, H. M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155(2), 320–326.

    Article  CAS  Google Scholar 

  • Akhand, A., Chanda, A., Dutta, S., Hazra, S., & Sanyal, P. (2012). Comparative study of heavy metals in selected mangroves of Sundarban ecosystem, India. J of Environ Biol, 33, 1045–1049.

    CAS  Google Scholar 

  • Assar, A. H. A., Joseph, D., Suprasanna, P., Choudhury, R. K., Saxena, A., & Bapat, V. A. (2002). Study of trace element correlations with drought tolerance in different sorghum genotypes using energy-dispersive X-ray fluorescence technique. Biological Trace Element Research, 85, 255–267.

    Article  CAS  Google Scholar 

  • Badarudden, A., Sajan, K., Srinivas, R., Maya, K., & Padmalal, D. (2014). Environmental significance of heavy metals in leaves and stems of Kerala mangroves, SW coast of India. Ind J Geo-Mar Sci, 43(6), 1021–1029.

    Google Scholar 

  • Bakshi, M., & Chaudhuri, P. (2014). Antimicrobial potential of leaf extracts of ten mangrove species from Indian Sundarban. International Journal Pharmaceutics Biology Science, 5, 294–304.

  • Bakshi, M., Ghosh, S., & Chaudhuri, P. (2015). Green synthesis, characterization and antimicrobial potential of silver nanoparticles using three mangrove plants from Indian Sundarban. BioNanoScience, 5(3), 162–170.

  • Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management, 10, 421–452.

    Article  CAS  Google Scholar 

  • Banerjee LK, Sastry ARK, Nayar MP (1989) Mangroves in India: identification manual. Botanical Survey of India, Calcutta.

  • Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India. Environmental Geochemistry and Health, 34, 27–42.

    Article  CAS  Google Scholar 

  • Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environment International, 48, 84–101.

    Article  CAS  Google Scholar 

  • Begum, B., Biswas, S., & Hopke, P. (2008). Assessment of trends and present ambient concentrations of PM2.2 and PM10 in Dhaka, Bangladesh. Air quality, Atomos Health, 1(3), 125–133.

    Article  Google Scholar 

  • Birch, G. F. (2016). Determination of sediment metal background concentrations and enrichment in marine environments—a critical review. The Science of the Total Environment, 580, 813–831.

    Article  Google Scholar 

  • Birch, G. F., Chang, C. H., Lee, J. H., & Churchill, L. J. (2013). The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney Estuary, Australia). The Science of the Total Environment, 454–455, 542–561.

    Article  Google Scholar 

  • Birch, G. F., Taylor, S. E., & Matthai, C. (2001). Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Env Poll, 113(3), 357–372.

    Article  CAS  Google Scholar 

  • Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76, 89–131.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5, 151–169.

    Article  CAS  Google Scholar 

  • Chakraborty, D., Bhar, S., Majumdar, J., & Santra, S. C. (2013). Heavy metal pollution and phytoremediation potential of Avicennia officinalis L. in the southern coast of the Hoogly estuarine system. Int J Environ Sci, 3(6).

  • Chakraborty, P., Ramteke, D., Chakraborty, S., & Nagender, N. B. (2014). Changes in metal contamination levels in estuarine sediments around India—an assessment. Marine Pollution Bulletin, 78, 15–25.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., & Saha, S. (2009). An assessment of trace element contamination in intertidal sediment cores of Sundarban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., & Satpathy, K. K. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  • Chaudhuri, P., Nath, B., & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine Pollution Bulletin, 79(1–2), 284–292.

    Article  CAS  Google Scholar 

  • Clark, M. W., McConchie, D., Lewis, D. W., & Saenger, P. (1998). Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chemical Geology, 149, 147–171.

    Article  CAS  Google Scholar 

  • Decov VM, Subramanian V, Van Grieken R (1999) Chemical composition of riverine suspended matter and sediments from the Indian sub-continent. In: Ittekot V, Subramanian V, Annadurai S (Eds.), Biogeochemistry of rivers in tropical South and Southeast Asia. Mitteilugen aus dem Geologisch-Paläontolgischen Institut der Universität, Heft 82. SCOPE Sonderband Hamburg, pp. 99–109.

  • Fang, G. C., Wu, Y. S., Huang, S. H., & Rau, J. Y. (2004). Dry deposition (downward, upward) concentration study of particulates and heavy metals during daytime, nighttime period at the traffic sampling site of Sha-lu, Taiwan. Chemosphere, 56(6), 509–518.

    Article  CAS  Google Scholar 

  • Farsad, F., Karbassi, A., Monavari, S. M., Mortazavi, M. S., & Farshchi, P. (2011). Development of a new pollution index for heavy metals in sediments. Biological Trace Element Research, 143, 1828–1842.

    Article  CAS  Google Scholar 

  • Ferati, F., Kerolli-Mustafa, M., & Kraja-Ylli, A. (2015). Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environmental Monitoring and Assessment, 187(6).

  • Forstner U, Stoffers P (1990) editors, Sediment and environmental geochemistry: selected aspects can case histories. Springer, Berlin, Heidelberg, New York. 311–338.

  • Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes, 10, 227–261.

    Article  Google Scholar 

  • Ghosh S, Bakshi M, Bhattacharyya S, Nath B, Chaudhuri P (2015) A review of threats and vulnerabilities to mangrove habitats: with special emphasis on east coast of India. Earth Sci Clim Change http://dx.doi.org/10.4172/2157-7617.1000270.

  • Ghosh, S., Sankar, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India. Mar Pol Bull http, 109, 539–549.

    Article  CAS  Google Scholar 

  • Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, Y., & Sepúlveda, N. (2004). Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in central Chile. Env Poll, 127(3), 343–352.

    Article  CAS  Google Scholar 

  • Gołdyn, B., Chudzińska, M., Barałkiewicz, D., & Celewicz-Gołdyn, S. (2015). Heavy metal contents in the sediments of astatic ponds: influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicology and Environmental Safety, 118, 103–111.

    Article  Google Scholar 

  • Gong, Q. J., Deng, J., Xiang, Y. C., Wang, Q. F., & Yang, L. Q. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.

    Article  CAS  Google Scholar 

  • Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquatic Sciences, 68, 338–354.

    Article  Google Scholar 

  • Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: distribution, bioavailability, and risk. Ecological Engineering, 81, 243–255.

    Article  Google Scholar 

  • Hakanson, L. ((1980)). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001.

  • Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstron-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique. Environmental Pollution, 145(1), 245–257.

    Article  CAS  Google Scholar 

  • Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89, 23–30.

    Article  Google Scholar 

  • Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14, 1599–1610.

    Article  Google Scholar 

  • Karar, K., & Gupta, A. K. (2006). Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta). India Atmos Res, 81(1), 36–53.

    Article  CAS  Google Scholar 

  • Kment, P., Mihaljevic, M., Ettler, V., et al. (2005). Differentiation of Czech wines using multielement composition—a comparison with vineyard soil. Food Chemistry, 91, 157–165.

    Article  CAS  Google Scholar 

  • Lacerda, L. D., & Abrao, J. J. (1984). Heavy metals accumulation by mangrove and salt marsh intertidal sediments. Revista Brasileira de Botanica, 7, 49–52.

    Google Scholar 

  • Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16(11), 1361–1368.

    Article  CAS  Google Scholar 

  • Liu, Y., Tam, N. F. Y., Yang, J. X., Pi, N., Wong, M. H., & Ye, Z. H. ((2009)). Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Marine Pollution Bulletin, 58, 1843–1849.

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human Ecol Risk Assess, 4, 1019–1039.

    Article  Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • MacDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: a synthesis of field studies. Chemosphere, 69, 1454–1464.

    Article  CAS  Google Scholar 

  • Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M (2015) Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J Soils sediments DOI 10.1007/s11368-015-1260-x.

  • Menghan, W., Stefano, A., Annamaria, L., Claudia, C., Antonio, C., Wanjun, L., Marco, S., Angela, D., & Benedetto, D. V. (2015). Compositional analysis and pollution impact assessment: a case study in the gulfs of Naples and Salerno. Estuarine, Coastal and Shelf Science, 160, 22–32.

    Article  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nath, B., Birch, G., & Chaudhuri, P. (2013). Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. The Science of the Total Environment, 463-464, 667–674.

    Article  CAS  Google Scholar 

  • Nath, B., Birch, G., & Chaudhuri, P. (2014b). Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination. The Science of the Total Environment, 472, 1010–1022.

    Article  CAS  Google Scholar 

  • Nath, B., Chaudhuri, P., & Birch, G. (2014a). Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney estuary, Australia. Ecotoxicology and Environmental Safety, 107, 284–290.

    Article  CAS  Google Scholar 

  • Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emission to particulate matter concentrations from field measurements: a review. Atmospheric Environment, 77, 78–97.

    Article  CAS  Google Scholar 

  • Pytlakowska, K., Kita, A., Janoska, P., Połowniak, M., & Kozik, V. (2012). Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chemistry, 135, 494–501.

    Article  CAS  Google Scholar 

  • Qi, H., Li, H., Ma, P., & You, J. (2015). Integrated sediment quality assessment through biomarker responses and bioavailability measurements: application in Tai Lake, China. Ecotoxicology and Environmental Safety, 119, 148–154.

    Article  CAS  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., et al. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Engin, 5, 5–12.

    Article  Google Scholar 

  • Ravisankar, R., Sivakumar, S., Chandrasekaran, A., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2015). Statistical assessment of heavy metal pollution in sediments of east coast of Tamil Nadu using energy dispersive X-ray fluorescence spectroscopy (EDXRF). Applied Radiation and Isotopes, 102, 42–47.

    Article  CAS  Google Scholar 

  • Reimann, C., Englmaier, P., Fabian, K., Gough, L., Lamothe, P., & Smithe, D. (2015). Biogeochemical plant–soil interaction: variable element composition in leaves of four plant species collected along a south–north transect at the southern tip of Norway. The Science of the Total Environment, 506–507, 480–495.

    Article  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin Heidelberg Tokyo: Springer.

    Book  Google Scholar 

  • Sany, S. B. T., Salleh, A., Sulaiman, A. H., Sasekumar, A., Tehrani, G., & Rezayi, M. (2012). Distribution characteristics and ecological risk of heavy metals in surface sediments of West Port, Malaysia. Env Protection Engg, 38(4), 139–155.

    CAS  Google Scholar 

  • Sarkar, S. K., Franciscovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30, 1089–1098.

    Article  Google Scholar 

  • Schneider, A. R., Cancès, B., Breton, C., Ponthieu, M., Morvan, X., Conreux, A., & Marin, B. (2015). Comparison of field portable XRF and aqua regia/ICPAES soil analysis and evaluation of soil moisture influence on FPXRF results. J Soils sediments DOI. doi:10.1007/s11368-015-1252-x.

    Google Scholar 

  • Shtangeeva, I. V. (1994). Variations of the elemental composition of plants and soils. Journal of Radioanalytical and Nuclear Chemistry Articles, 177(2), 381–391.

    Article  CAS  Google Scholar 

  • Shtangeeva, I., Alber, D., Bukalis, G., Stanik, B., & Zepezauer, F. (2009). Multivariate statistical analysis of nutrients and trace elements in plants and soil from northwestern Russia. Plant and Soil, 322, 219–228.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Singh, M. (2006). Lead decline in the Indian environment resulting from the petrol lead phase out programme. The Science of the Total Environment, 368(2–3), 686–694.

    Article  CAS  Google Scholar 

  • Sobrado, M. A., & Greaves, E. D. (2000). Leaf secretion composition of the mangrove species Avicennia germinans (L.) in relation to salinity: a case study by using total-reflection X-ray fluorescence analysis. Plant Science, 159, 1–5.

    Article  CAS  Google Scholar 

  • Spencer, K. L., & Macleod, C. L. (2002). Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards. Hydrol Earth Syst Sc, 6, 989–998.

    Article  Google Scholar 

  • Swain, S. S., Ray, D. K., & Chand, P. K. (2012). ED-XRF spectrometry-based trace element composition of genetically engineered rhizoclones vis-à-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.) J Radioanal Nucl Chem, 293, 443–453.

    Article  CAS  Google Scholar 

  • Taylor, S., & McLennan, S. (1985). The continental crust: its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution. Helgoländer Meeresunter suchungen, 33, 566–575.

    Article  Google Scholar 

  • Tsai, Y. I., Kuo, S. C., & Lin, Y. H. (2003). Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan. Atmospheric Environment, 37(24), 3401–3411.

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (1985) GESAMP: cadmium, lead and tin in marine environment. United Nations Environment Programme: Regional Seas Reports and Studies. 56: p. 90.

  • Veerasingam, S., Vethamony, P., Mani Murali, R., & Fernandes, B. (2015). Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India. Marine Pollution Bulletin, 91(1), 362–367.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of a rapid method for determination of organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–257.

    Article  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.

  • Willey, N. J., & Fawcett, K. (2006). Inter-taxa differences in root uptake of 103/106Ru by plants. J Environ Radioactivity, 86, 227–240.

    Article  CAS  Google Scholar 

  • Zhang, J. E., Liu, J. L., Ouyang, Y., Liao, B. W., & Zhao, B. L. (2010). Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecol Engineer, 36, 807–812.

    Article  Google Scholar 

  • Zhao D, Wan S, Yu Z, Huang J (2015) Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environ Earth Sci doi.org/10.1007/s12665-015-4522-4.

  • Zhou, Y. W., Peng, Y. S., Li, X. L., & Chen, G. Z. (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environment and Earth Science, 64, 799–807.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MB and PC are thankful to UGC, University of Calcutta, and the Govt. of West Bengal, India [Grant number: UGC/971/Fellow (Univ)]; SG and PC acknowledge DST, Govt. of India [Grant number SR/FT/LS-155/2011]; MB, SG, and PC acknowledge UGC-DAE, Kolkata Centre, for providing financial and infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punarbasu Chaudhuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, M., Ram, S.S., Ghosh, S. et al. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environ Monit Assess 189, 221 (2017). https://doi.org/10.1007/s10661-017-5891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5891-9

Keywords

Navigation